Search results for "Mitogen-Activated Protein Kinase"
showing 10 items of 353 documents
p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells
2007
Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38p recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity …
Tumor Necrosis Factor (TNF) Receptor 1 Signaling Downstream of TNF Receptor-associated Factor 2
1997
Like other members of the tumor necrosis factor (TNF) receptor family, p55 TNF receptor 1 (TNF-R1) lacks intrinsic signaling capacity and transduces signals by recruiting associating molecules. The TNF-R1 associated death domain protein interacts with the p55 TNF-R1 cytoplasmic domain and recruits the Fas-associated death domain protein (which directly activates the apoptotic proteases), the protein kinase receptor interacting protein, and TNF receptor-associated factor 2 (TRAF2). TRAF2 has previously been demonstrated to activate both transcription factor nuclear factor kappaB (NFkappaB) and the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway, which in turn stimu…
The neuropeptide PACAP promotes ?‐secretase pathway for processing Alzheimer amyloid precursor protein
2006
SPECIFIC AIMSProteolytic cleavage of the amyloid precursor protein (APP) by α-secretase within the Aβ sequence precludes formation of amyloidogenic peptides and leads to a release of soluble APPsα,...
Differences in the signaling pathways of α(1A)- and α(1B)-adrenoceptors are related to different endosomal targeting.
2013
AIMS: To compare the constitutive and agonist-dependent endosomal trafficking of α(1A)- and α(1B)-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. METHODS: Using CypHer5 technology and VSV-G epitope tagged α(1A)- and α(1B)-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). RESULTS AND C…
Oestradiol or genistein rescues neurons from amyloid beta-induced cell death by inhibiting activation of p38.
2007
Oestrogenic compounds have been postulated as neuroprotective agents. This prompted us to investigate their mechanism action in neurons in primary culture. Cells were pretreated with physiological concentrations of 17-beta estradiol (0.2 nm) or with nutritionally relevant concentrations of genistein (0.5 microm), and 48 h later treated with 5 microm of amyloid beta (Abeta) for 24 h. We found that Abeta increased oxidative stress, measured as peroxide levels or oxidized glutathione/reduced glutathione ratio, which in turn, caused phosphorylation of p38 MAP kinase. Amyloid beta subsequently induced neuronal death. Inhibiting the MAP kinase pathway prevented cell death, confirming the role of …
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health
2011
William H. Chappell 1 , Linda S. Steelman 1,2 , Jacquelyn M. Long 2 , Ruth C. Kempf 2 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Jorg Basecke 3 , Franca Stivala 4 , Marco Donia 4 , Paolo Fagone 4 , Graziella Malaponte 4 , Maria C. Mazzarino 4 , Ferdinando Nicoletti 4 , Massimo Libra 4 , Danijela Maksimovic-Ivanic 5 , Sanja Mijatovic 5 , Giuseppe Montalto 6 , Melchiorre Cervello 7 , Piotr Laidler 8 , Michele Milella 9 , Agostino Tafuri 10 , Antonio Bonati 11 , Camilla Evangelisti 12 , Lucio Cocco 12 , Alberto M. Martelli 12,13 , and James A. McCubrey 1 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University 2 Department of Physics, Greenville, N…
Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery.
2014
AbstractNucleotides activating P2Y13 receptors display neuroprotective actions against different apoptotic stimuli in cerebellar granule neurons. In the present study, P2Y13 neuroprotection was analyzed in conditions of genotoxic stress. Exposure to cisplatin and UV radiation induced caspase-3-dependent apoptotic cell death, and p38 MAPK signaling de-regulation. Pre-treatment with P2Y13 nucleotide agonist, 2methyl-thio-ADP (2MeSADP), restored granule neuron survival and prevented p38 long-lasting activation induced by cytotoxic treatments. Microarray gene expression analysis in 2MeSADP-stimulated cells revealed over-representation of genes related to protein phosphatase activity. Among them…
Inhibitory effects of cynaropicrin on human melanoma progression by targeting MAPK, NF-κB, and Nrf-2 signaling pathways in vitro
2021
Malignant melanoma is the deadliest skin cancer, due to its propensity to metastasize. MAPKs and NF-κB pathways are constitutively activated in melanoma and promote cell proliferation, cell invasion, metastasis formation, and resistance to therapeutic regimens. Thus, they represent potential targets for melanoma prevention and treatment. Phytochemicals are gaining considerable attention for the management of melanoma because of their several cellular and molecular targets. A screening of a small library of sesquiterpenes lactones selected cynaropicrin, isolated from the aerial parts of Centaurea drabifolia subsp. detonsa, for its potential anticancer effect against melanoma cells. Treatment…
The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation
2013
AbstractWe analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activ…
Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells
2001
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA act…