Search results for "Monte Carlo method."
showing 10 items of 1217 documents
Reflection-refraction effects on light distribution inside tubular photobioreactors
2017
One of the main parameters affecting autotrophic algae cultures is photon absorption distribution inside the photobioreactor. This clearly depends on the geometry of both the radiation source and the photobioreactor, as well as on algae suspension optical properties. In this work the local volumetric rate of photon absorption LVRPA in a cross-section of a horizontal-pipe photobioreactor was investigated by means of simplified Monte Carlo simulations. In particular, the fate of a number of photons perpendicularly hitting the photobioreactor circular section was simulated in relation to different values of algae concentration. The model takes into account refraction/reflection phenomena at th…
Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr 3 Perovskite Nanocrystals
2021
Reabsorption and reemission of photons, or photon recycling (PR) effect, represents an outstanding mechanism to enhance the carrier and photon densities in semiconductor thin films. This work demonstrates the propagation of recycled photons over several mm by integrating a thin film of CsPbBr3 nanocrystals into a planar waveguide. An experimental set-up based on a frequency modulation spectroscopy allows to characterize the PR effect and the determination of the effective decay time of outcoupled photons. A correlation between the observed photoluminescence redshift and the increase of the effective decay time is demonstrated, which grows from 3.5 to near 9 ns in the best device. A stochast…
Polydisperse polymer brushes: internal structure, critical behavior, and interaction with flow
2016
We study the effect of polydispersity on the structure of polymer brushes by analytical theory, a numerical self-consistent field approach, and Monte Carlo simulations. The polydispersity is represented by the Schulz-Zimm chain-length distribution. We specifically focus on three different polydispersities representing sharp, moderate and extremely wide chain length distributions and derive explicit analytical expressions for the chain end distributions in these brushes. The results are in very good agreement with numerical data obtained with self-consistent field calculations and Monte Carlo simulations. With increasing polydispersity, the brush density profile changes from convex to concav…
Monte Carlo simulation in polymer physics: Some recent developments
1991
The computer simulation of macromolecular materials has to deal with phenomena on length scales from 1A to 100A, as well as with time scales ranging over many orders of magnitude, and thus still presents a challenge. With suitably coarse-grained models which disregard detailed information on chemical structure nevertheless collective phenomena can be described, such as unmixing of polymer blends, mesophase ordering of block-copolymer melts, “blob formation” in semidilute solutions, etc. Simulations of such models provide a sensitive test of approximate theories and give valuable hints for experiments.
Conformational Properties of Semiflexible Chains at Nematic Ordering Transitions in Thin Films: A Monte Carlo Simulation
2014
Athermal solutions of semiflexible macromolecules with excluded volume interactions and with varying concentration (dilute, semidilute, and concentrated solutions) in a film of thickness D between ...
Monte Carlo modelling of the polymer glass transition
1993
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.
Adsorption Active Diblock Copolymers as Universal Agents for Unusual Barrier-Free Transitions in Stimuli-Responsive Brushes
2021
We reconsider a recently proposed design for smart responsive brushes, which is based on a conformational transition in very dilutely embedded block copolymers with a surface active block (Qi et al., Macromolecules 53, 5326, 2020). Under certain conditions, the transition acquires an unusual character: it remains very sharp, but the barrier separating the adsorbed and desorbed states disappears completely. We show that these features are very robust with respect to changing almost all system parameters: the lengths of the inert and active blocks of the minority chain, the brush length, its density, and its polydispersity. The only relevant condition is that the inert block of the minority c…
PET/PEN Blends of Industrial Interest as Barrier Materials. Part I. Many-Scale Molecular Modeling of PET/PEN Blends
2006
Mesoscale molecular simulations, based on parameters obtained through atomistic molecular dynamics and Monte Carlo calculations, have been used for modeling and predicting the behavior of PET/PEN blends. Different simulations have been performed in order to study and compare pure homopolymer blends with blends characterized by the presence of PET/PEN block copolymers acting as compatibilizer. A many-scale molecular modeling strategy was devised to evaluate PET/PEN blend characteristics, simulate phase segregation in pure PET/PEN blends, and demonstrate the improvement of miscibility due to the presence of the transesterification reaction products. The behavior of distribution densities and …
Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields
2012
AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluct…
A monte carlo study of dose rate distribution around the specially asymmetric CSM3-a 137Cs source.
2001
The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute do…