Search results for "Motor Cortex"
showing 10 items of 244 documents
Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study
2020
AbstractMild cognitive impairment (MCI) is a very common non-motor feature of Parkinson’s disease (PD) and the non-amnestic single-domain is the most frequent subtype. Transcranial random noise stimulation (tRNS) is a non-invasive technique, which is capable of enhancing cortical excitability. As the main contributor to voluntary movement control, the primary motor cortex (M1) has been recently reported to be involved in higher cognitive functioning. The aim of this study is to evaluate the effects of tRNS applied over M1 in PD-MCI patients in cognitive and motor tasks. Ten PD-MCI patients, diagnosed according to the Movement Disorder Society, Level II criteria for MCI, underwent active (re…
Effects of More-Affected vs. Less-Affected Motor Cortex tDCS in Parkinson’s Disease
2017
Objective. To evaluate therapeutic potential of different montages of transcranial direct current stimulation (tDCS) in Parkinson’s Disease (PD) patients with asymmetric motor symptoms. Materials and Methods. Fourteen patients with asymmetric PD underwent, while on treatment, seven separate sessions including electrophysiological and clinical evaluation at baseline and after anodal, cathodal and sham tDCS of the primary motor cortex (M1) of the two hemispheres. Changes in motor cortical excitability were evaluated by transcranial magnetic stimulation. Effects on motor symptoms were assessed by testing finger tapping and upper limb bradykinesia, and by using the Italian validated Movement Di…
Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing.
2018
Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude. Thus, tSMS may affect cortical nociceptive processing. Although the results of intervention f…
New insight on the role of late indirect‐wave pathway underlying theta‐burst stimulation‐induced plasticity
2020
International audience
Normative vs. patient-specific brain connectivity in Deep Brain Stimulation
2020
AbstractBrain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing patient-specific diffusion-weighted imaging data, most studies have employed normative atlases of the human connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease-matched and normative structural connectivity data and retrospective estimation of clinical improvement that they may generate.Data from 33 patien…
Mapping effective connectivity between the frontal and contralateral primary motor cortex using dual-coil transcranial magnetic stimulation
2019
AbstractCytoarchitectonic, anatomical and electrophysiological studies have divided the frontal cortex into distinct functional subdivisions. Many of these subdivisions are anatomically connected with the contralateral primary motor cortex (M1); however, effective neurophysiological connectivity between these regions is not well defined in humans. Therefore, we aimed to use dual-coil transcranial magnetic stimulation (TMS) to map, with high spatial resolution, the effective connectivity between different frontal regions of the right hemisphere and contralateral M1 (cM1). TMS was applied over the left M1 alone (test pulse) or after a conditioning pulse was applied to different grid points co…
Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening.
2015
Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude…
Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study
2014
[Abstract.] Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neuro- logical rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute mid- dle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was perf…
Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the hu…
2012
Experimental studies emphasize the importance of homeostatic plasticity as a mean of stabilizing the properties of neural circuits. In the present work we combined two techniques able to produce short-term (5-Hz repetitive transcranial magnetic stimulation, rTMS) and long-term (transcranial direct current stimulation, tDCS) effects on corticospinal excitability to evaluate whether and how the effects of 5-Hz rTMS can be tuned by tDCS preconditioning. Twelve healthy subjects participated in the study. Brief trains of 5-Hz rTMS were applied to the primary motor cortex at an intensity of 120% of the resting motor threshold, with recording of the electromyograph traces evoked by each stimulus o…
Combining tDCS with prismatic adaptation for non-invasive neuromodulation of the motor cortex
2017
Abstract Background Prismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic goggles are also able to modulate brain excitability, with cognitive after-effects documented even in tasks not necessarily spatial in nature. Objective The aim of the present study was to test whether neuromodulatory effects obtained from tDCS and prismatic goggles could interact and induce homeostatic changes in corticospinal excitability. Methods Thirty-four subjects were submitted to single-pulse transcranial magnetic stimulation (TMS) over the right primary motor cortex to measure Input-Output (IO) curve as a…