Search results for "NCAM"

showing 10 items of 33 documents

Polysialic Acid Acute Depletion Induces Structural Plasticity in Interneurons and Impairs the Excitation/Inhibition Balance in Medial Prefrontal Cort…

2016

The structure and function of the medial prefrontal cortex (mPFC) is affected in several neuropsychiatric disorders, including schizophrenia and major depression. Recent studies suggest that imbalances between excitatory and inhibitory activity (E/I) may be responsible for this cortical dysfunction and, therefore, may underlie the core symptoms of these diseases. This E/I imbalance seems to be correlated with alterations in the plasticity of interneurons but there is still scarce information on the mechanisms that may link these phenomena. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate, because it modulates the neuronal plasticity of interneurons…

0301 basic medicineGenetically modified mousePSA-NCAMneuronal structural plasticityInhibitory postsynaptic potential03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineE/I balanceNeuroplasticitymedicinePrefrontal cortexOriginal ResearchPolysialic acidmusculoskeletal neural and ocular physiologymedicine.diseaseschizophreniamPFC cultures030104 developmental biologynervous systemSchizophreniaExcitatory postsynaptic potentialNeural cell adhesion moleculemajor depressionPsychologyNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Chronic Stress Modulates Interneuronal Plasticity: Effects on PSA-NCAM and Perineuronal Nets in Cortical and Extracortical Regions.

2018

Chronic stress has an important impact on the adult brain. However, most of the knowledge on its effects is focused on principal neurons and less on inhibitory neurons. Consequently, recent reports have begun to describe stress-induced alterations in the structure, connectivity and neurochemistry of interneurons. Some of these changes appear to be mediated by certain molecules particularly associated to interneurons, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and components of the perineuronal nets (PNN), specialized regions of the extracellular matrix. These plasticity-related molecules modulate interneuronal structure and connectivity, particularly of …

0301 basic medicineInterneuronPSA-NCAMhippocampusHippocampuslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicineChronic stresslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchchronic stressreticular thalamic nucleusThalamic reticular nucleusbiologyhabenulaPerineuronal netmusculoskeletal neural and ocular physiology030104 developmental biologymedicine.anatomical_structureHabenulanervous systembiology.proteinperineuronal netNeuroscience030217 neurology & neurosurgeryParvalbuminmedial prefrontal cortexbasolateral amygdalaBasolateral amygdalaNeuroscienceFrontiers in cellular neuroscience
researchProduct

Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II

2016

Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell ad…

0301 basic medicineLow-density lipoprotein receptor-related protein 8PSA-NCAMlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencepiriform cortex0302 clinical medicineADULT-RATSYNAPTIC PLASTICITYCEREBRAL-CORTEXPiriform cortexmedicineMESSENGER-RNA EXPRESSIONPSA-NCAM EXPRESSIONReelinCajal-Retzius cellslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchNeocortexbiology3112 NeurosciencesNONHUMAN-PRIMATESReelinDAB1DoublecortinDOUBLECORTIN-EXPRESSING CELLS030104 developmental biologymedicine.anatomical_structureSTRUCTURAL PLASTICITYnervous systemDCXbiology.proteinNeural cell adhesion moleculeNeuNNeuroscienceHIPPOCAMPAL CONNECTIONS030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress

2016

Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days …

0301 basic medicineMaleDendritic spineDendritic SpinesHippocampusPSA‐NCAMCell CountNeural Cell Adhesion Molecule L1Hippocampal formationBiologyNeurotransmissionAmygdalaHippocampus03 medical and health sciencesBehavioral NeuroscienceMice0302 clinical medicineInterneuronsNeuroplasticitymedicineAnimalsChronic stressCA1 Region HippocampalOriginal ResearchInhibitionNeuronal PlasticityGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyfungiCA3 Region Hippocampalstructural plasticity030104 developmental biologymedicine.anatomical_structurenervous systemExcitatory postsynaptic potentialGAD67Sialic AcidsNeuroscience030217 neurology & neurosurgeryStress PsychologicalBrain and Behavior
researchProduct

Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex

2020

The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and …

0301 basic medicinedopamine D2 receptorPSA-NCAMPopulationBiologylcsh:RC321-57103 medical and health scienceschemistry.chemical_compoundpiriform cortex0302 clinical medicineDopaminePiriform cortexDopamine receptor D2medicineeducationNeurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatryeducation.field_of_studyGeneral NeuroscienceDopaminergicBrief Research ReportCell biology030104 developmental biologychemistrynervous systemplasticityNeural cell adhesion moleculedopamineNeural development030217 neurology & neurosurgeryNeurosciencemedicine.drug
researchProduct

Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex.

2016

Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of…

0301 basic medicinegenetic structuresPSA-NCAMta3112lcsh:RC321-571critical period plasticity03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineparvalbumin interneuronsSYNAPTIC PLASTICITYNeuroplasticitymedicinevisual plasticityMONOCULAR DEPRIVATIONlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryREGULATES PLASTICITYOriginal ResearchbiologyMEDIAL PREFRONTAL CORTEXPOLYSIALIC ACID3112 NeurosciencesCELLULAR AND MOLECULAR NEUROSCIENCEfluoxetineLong-term potentiationSciences bio-médicales et agricoles3. Good healthOCULAR DOMINANCE PLASTICITYMonocular deprivation030104 developmental biologyVisual cortexmedicine.anatomical_structureSTRUCTURAL PLASTICITYnervous systemCELL-ADHESION MOLECULESynaptic plasticitybiology.proteinNeural cell adhesion moleculeLONG-TERM POTENTIATIONPsychologyNeuroscience030217 neurology & neurosurgeryParvalbuminNeuroscienceNEUROTROPHIC FACTORFOSB
researchProduct

Lack of Hypothalamus Polysialylation Inducibility Correlates With Maladaptive Eating Behaviors and Predisposition to Obesity

2018

This original research article (6 p.) is part of the research topic . Specialty section: This article was submitted to Neuroenergetics, Nutrition and Brain Health, a section of the journal Frontiers in Nutrition.; International audience; High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalami…

0301 basic medicineobesityfood intakePSA-NCAMEndocrinology Diabetes and Metabolismmedia_common.quotation_subject[SDV]Life Sciences [q-bio][SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiologybrainmaladaptive eating behaviorlcsh:TX341-641BiologyOverweightEnergy homeostasis03 medical and health sciencesNeuroplasticitymedicineFood and Nutritionhypothalamusmedia_commonNutritionOriginal ResearchNutrition and Dieteticssynaptic plasticitycomportement alimentairepolysialylation[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyNeurosciencesAppetitemedicine.diseaseprise alimentaireObesity3. Good health[SDV] Life Sciences [q-bio]food intake;obesity;maladaptive eating behavior;synaptic plasticity;PSA-NCAM;polysialylation;brain;hypothalamusEating disordersobésité030104 developmental biologynervous systemHypothalamusNeurons and CognitionSynaptic plasticityAlimentation et Nutritionplasticité synaptiquecerveaumedicine.symptomlcsh:Nutrition. Foods and food supplyNeuroscienceFood ScienceFrontiers in Nutrition
researchProduct

Study of the population of immature neurons in the adult piriform cortex layer II

2019

Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSANCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional…

:CIENCIAS DE LA VIDA::Biología celular [UNESCO]nervous systemcorteza piriformeUNESCO::CIENCIAS DE LA VIDA::VirologíaDCXPSA-NCAMratónUNESCO::CIENCIAS DE LA VIDA::Biología celular:CIENCIAS DE LA VIDA::Virología [UNESCO]neuronas inmadurasplasticidad cerebral
researchProduct

Occurrence of new neurons in the piriform cortex

2015

In a recent mini-review (Yuan et al., 2015), support is given to the idea that neurons are generated during adulthood in the mammalian piriform cortex (PC), their periventricular origin being also discussed. It is known since long time that a subpopulation of cortical layer II cells in the adult PC of rodents express immature neuronal markers such as polysialylated NCAM (PSA-NCAM; Seki and Arai, 1991; Bonfanti et al., 1992) and doublecortin (DCX; Nacher et al., 2002). These immature neurons have been found in most mammals studied so far, their occurrence being restricted to the paleocortex in rodents (Seki and Arai, 1991; Bonfanti et al., 1992; Nacher et al., 2002), and extended to neocorti…

Adult neurogenesis; Doublecortin; Piriform cortex; PSA-NCAM; Structural plasticity; Anatomy; Neuroscience (miscellaneous); Cellular and Molecular NeuroscienceOlfactory systembiologyGeneral CommentaryPSA-NCAMNeurogenesisNeuroscience (miscellaneous)Embryonic stem cellstructural plasticityOlfactory bulbDoublecortinadult neurogenesispiriform cortexCellular and Molecular Neurosciencenervous systemdoublecortinPiriform cortexBrain sizebiology.proteinNeural cell adhesion moleculeAnatomyNeuroscienceNeuroscienceFrontiers in Neuroanatomy
researchProduct

Polysialic acid is required for dopamine D2 receptor-mediated plasticity involving inhibitory circuits of the rat medial prefrontal cortex.

2011

Decreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants…

Central Nervous SystemMaleAnatomy and Physiologylcsh:MedicineRats Sprague-DawleyNeural PathwaysMolecular Cell BiologyNeurobiology of Disease and Regenerationlcsh:SciencePsychiatryMicroscopy ConfocalNeuronal PlasticityMultidisciplinaryNeuronal MorphologybiologyGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyNeurotransmittersAnatomyImmunohistochemistryMental Healthmedicine.anatomical_structureNeurologyDopamine AgonistsMedicineNcamResearch Articlemedicine.drugNeural NetworksInterneuronSynaptophysinNeurophysiologyPrefrontal CortexNeuropsychiatric DisordersNeural Cell Adhesion Molecule L1NeurotransmissionNeurological SystemNeuropharmacologyDopamineDopamine receptor D2NeuroplasticityCell AdhesionNeuropilmedicineAnimalsBiologyMood DisordersReceptors Dopamine D2lcsh:RRatsNeuroanatomynervous systemCellular NeuroscienceSynapsesSchizophreniaSialic Acidsbiology.proteinNeural cell adhesion moleculelcsh:QNeuroscienceParvalbuminNeurosciencePLoS ONE
researchProduct