Search results for "NEURAL NETWORK"

showing 10 items of 1385 documents

A water demand model by means of the artificial neural networks method

2004

Artificial neural networkbusiness.industryComputer scienceArtificial intelligencebusinessWater demand
researchProduct

A spiking network for body size learning inspired by the fruit fly

2013

The concept of peripersonal space is an interesting research topics for psychologists, neurobiologists and for robotic applications. A living being can learn the representation of its own body to take the correct behavioral decision when interacting with the world. To transfer these important learning mechanisms on bio-robots, simple and efficient solutions can be found in the insect world. In this paper a neural-based model for body-size learning is proposed taking into account the results obtained in experiments with fruit flies. Simulations and experimental results on a roving platform are reported and compared with the biological counterpart.

Artificial neural networkbusiness.industryComputer scienceComputational modelMobile robotBiologically inspired modelsSpace (commercial competition)Body sizeMachine learningcomputer.software_genreDrosophila melanogasterSimple (abstract algebra)Biologically inspired models; Drosophila melanogaster; Computational modelArtificial intelligenceBiomimeticsbusinessRepresentation (mathematics)computer
researchProduct

The Use of Artificial Intelligence in Disaster Management - A Systematic Literature Review

2019

Whenever a disaster occurs, users in social media, sensors, cameras, satellites, and the like generate vast amounts of data. Emergency responders and victims use this data for situational awareness, decision-making, and safe evacuations. However, making sense of the generated information under time-bound situations is a challenging task as the amount of data can be significant, and there is a need for intelligent systems to analyze, process, and visualize it. With recent advancements in Artificial Intelligence (AI), numerous researchers have begun exploring AI, machine learning (ML), and deep learning (DL) techniques for big data analytics in managing disasters efficiently. This paper adopt…

Artificial neural networkbusiness.industryComputer scienceDeep learningBig dataIntelligent decision support system020206 networking & telecommunications02 engineering and technologyLatent Dirichlet allocationConvolutional neural networkSupport vector machinesymbols.namesakeNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM)
researchProduct

Combining Auto-Encoder with LSTM for WiFi-Based Fingerprint Positioning

2021

Although indoor positioning has long been investigated by various means, its accuracy remains concern. Several recent studies have applied machine learning algorithms to explore wireless fidelity (WiFi)-based positioning. In this paper, we propose a novel deep learning model which concatenates an auto-encoder with a long short term memory (LSTM) network for the purpose of WiFi fingerprint positioning. We first employ an auto-encoder to extract representative latent codes of fingerprints. Such an extraction is proven to be more reliable than simply using a deep neural network to extract representative features since a latent code can be reverted back to its original input. Then, a sequence o…

Artificial neural networkbusiness.industryComputer scienceDeep learningFeature extractionFingerprint (computing)WirelessPattern recognitionArtificial intelligenceFingerprint recognitionbusinessAutoencoderData modeling2021 International Conference on Computer Communications and Networks (ICCCN)
researchProduct

Semi-Supervised Support Vector Biophysical Parameter Estimation

2008

Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.

Artificial neural networkbusiness.industryComputer scienceEstimation theoryPattern recognitionRegression analysisSupport vector machineStatistics::Machine LearningKernel (linear algebra)Kernel methodVariable kernel density estimationPolynomial kernelRadial basis function kernelArtificial intelligencebusinessLaplace operatorIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Connectionist models of face processing: A survey

1994

Abstract Connectionist models of face recognition, identification, and categorization have appeared recently in several disciplines, including psychology, computer science, and engineering. We present a review of these models with the goal of complementing a recent survey by Samal and Iyengar [Pattern Recognition25, 65–77 (1992)] of nonconnectionist approaches to the problem of the automatic face recognition. We concentrate on models that use linear autoassociative networks, nonlinear autoassociative (or compression) and/or heteroassociative backpropagation networks. One advantage of these models over some nonconnectionist approaches is that analyzable features emerge naturally from image-b…

Artificial neural networkbusiness.industryComputer scienceFeature selectionMachine learningcomputer.software_genreFacial recognition systemBackpropagationCategorizationConnectionismArtificial IntelligenceFace (geometry)Signal ProcessingPattern recognition (psychology)Computer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerSoftwarePattern Recognition
researchProduct

Fast Fingerprints Classification Only Using the Directional Image

2007

The classification phase is an important step of an automatic fingerprint identification system, where the goal is to restrict only to a subset of the whole database the search time. The proposed system classifies fingerprint images in four classes using only directional image information. This approach, unlike the literature approaches, uses the acquired fingerprint image without enhancement phases application. The system extracts only directional image and uses three concurrent decisional modules to classify the fingerprint. The proposed system has a high classification speed and a very low computational cost. The experimental results show a classification rate of 87.27%.

Artificial neural networkbusiness.industryComputer scienceFingerprintBayesian networkPattern recognitionArtificial intelligencebusinessImage (mathematics)
researchProduct

Prediction and qualitative analysis of sensory perceptions over temporal vectors using combination of artificial neural networks and fuzzy logic: Val…

2020

Artificial neural networkbusiness.industryComputer scienceGeneral Chemical Engineeringmedia_common.quotation_subjectSensory systemGeneral ChemistryMachine learningcomputer.software_genreFuzzy logicQualitative analysisPerceptionArtificial intelligencebusinesscomputerFood Sciencemedia_commonJournal of Food Processing and Preservation
researchProduct

Logo detection in images using HOG and SIFT

2017

In this paper we present a study of logo detection in images from a media agency. We compare two most widely used methods — HOG and SIFT on a challenging dataset of images arising from a printed press and news portals. Despite common opinion that SIFT method is superior, our results show that HOG method performs significantly better on our dataset. We augment the HOG method with image resizing and rotation to improve its performance even more. We found out that by using such approach it is possible to obtain good results with increased recall and reasonably decreased precision.

Artificial neural networkbusiness.industryComputer scienceHistogramFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformLogoPattern recognitionArtificial intelligencebusinessRotation (mathematics)Object detection2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)
researchProduct

Automatic Identification of Watermarks and Watermarking Robustness Using Machine Learning Techniques

2021

The goal of this article is to propose a framework for automatic identification of watermarks from modified host images. The framework can be used with any watermark embedding/extraction system and is based on models built using machine learning (ML) techniques. Any supervised ML approach can be theoretically chosen. An important part of our framework consists in building a stand-alone module, independent of the watermarking system, for generating two types of watermarks datasets. The first type of datasets, that we will name artificially datasets, is generated from the original images by adding noise with an imposed maximum level of noise. The second type contains altered watermarked image…

Artificial neural networkbusiness.industryComputer scienceMachine learningcomputer.software_genreEnsemble learningSupport vector machineIdentification (information)Robustness (computer science)Computer Science::MultimediaNoise (video)Artificial intelligencebusinessHost (network)computerDigital watermarking
researchProduct