Search results for "NEUTRINO"
showing 10 items of 1752 documents
Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments
2020
The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…
Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques
2016
The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…
Search for heavy neutrinos with the T2K near detector ND280
2019
This paper reports on the search for heavy neutrinos with masses in the range 140<MN<493 MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓ±απ∓ and N→ℓ+αℓ−β(−)ν(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heav…
Low energy calibration, continuous monitoring, and background studies for the NEXT-White detector at the LSC
2021
Los neutrinos han sido una puerta a grandes cambios en los paradigmas del entendimiento de la naturaleza, y aún tienen preguntas que responder en las próximas décadas. El descubrimiento de la oscilación de neutrinos implica que éstos son partículas con masa. Esta masa abre la cuestión de su origen, es decir, si son fermiones de Dirac o de Majorana. La potencial naturaleza de Majorana puede arrojar luz en temas abiertos como la baja escala de masas de los neutrinos con respecto a los demás fermiones, así como la asimetría entre materia y antimateria observada actualmente en el universo. De entre todas las posibles formas de discernir la naturaleza última de los neutrinos, la más madura y des…
Volume I. Introduction to DUNE
2020
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
First real–time detection of solar pp neutrinos by Borexino
2014
International audience; Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.
Beta-spectrum shapes of forbidden β decays
2018
The neutrinoless [Formula: see text] decay of atomic nuclei continues to attract fervent interest due to its potential to confirm the possible Majorana nature of the neutrino, and thus the nonconservation of the lepton number. At the same time, the direct dark matter experiments are looking for weakly interacting massive particles (WIMPs) through their scattering on nuclei. The neutrino-oscillation experiments on reactor antineutrinos base their analyses on speculations of [Formula: see text]-spectrum shapes of nuclear decays, thus leading to the notorious “reactor antineutrino anomaly.” In all these experimental efforts, one encounters the problem of [Formula: see text]-spectrum shapes of…
Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays
2019
Neutrino–nuclear responses associated with astro-neutrinos, single beta decays and double beta decays are crucial in studies of neutrino properties of interest for astro-particle physics. The present report reviews briefly recent studies of the neutrino–nuclear responses from both experimental and theoretical points of view in order to obtain a consistent understanding of the many facets of the neutrino–nuclear responses. Subjects discussed in this review include (i) experimental studies of neutrino–nuclear responses by means of single beta decays, charge-exchange nuclear reactions, muon- photon- and neutrino–nuclear reactions, and nucleon-transfer reactions, (ii) implications of and discus…
Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay
2017
Neutrinoless double beta decay (0v\b{eta}\b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0v\b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extr…
Comparative analysis of muon-capture and 0νββ-decay matrix elements
2020
Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasip…