Search results for "Nanoparticles"
showing 10 items of 1286 documents
Comparison of quantum dot-binding protein tags: Affinity determination by ultracentrifugation and FRET
2013
Abstract Background Hybrid complexes of proteins and colloidal semiconductor nanocrystals (quantum dots, QDs) are of increasing interest in various fields of biochemistry and biomedicine, for instance for biolabeling or drug transport. The usefulness of protein–QD complexes for such applications is dependent on the binding specificity and strength of the components. Often the binding properties of these components are difficult and time consuming to assess. Methods In this work we characterized the interaction between recombinant light harvesting chlorophyll a / b complex (LHCII) and CdTe/CdSe/ZnS QDs by using ultracentrifugation and fluorescence resonance energy transfer (FRET) assay exper…
New Tools for Characterizing Metallic Nanoparticles: AgNPs, A Case Study.
2015
Currently, transmission electron microscopy (TEM) is the main technique for estimating the sizes of spherical nanoparticles (NPs) and through them, their concentrations. This paper demonstrates for the first time that C18 reversed-phase capillary liquid chromatography (Cap-LC) coupled to diode array detection (DAD) has the potential to estimate mean concentrations of silver nanoparticles (AgNPs) and thereby determine their average size. Direct injection of the sample without previous extraction or separation steps is carried out. Only a unique standard with a known AgNP size is needed for the calibration. In a first approach, the new method has been tested over silver nanoparticles, produce…
Functionalized Fe3O4 nanoparticles: influence of ligand addition sequence and pH during their continuous hydrothermal synthesis
2015
In this study we report various new efficient ways to synthesize and modify in situ magnetite (Fe3O4) iron oxide nanoparticles (NPs). Thanks to an apparatus especially developed for this new method of grafting, the NPs have been synthesized and functionalized by 3,4-dihydroxyhydrocinnamic acid (DHCA) or 3,4-dihydroxy-L-phenylalanine (LDOPA) in one step and under hydrothermal conditions using varying concentration ratios ([organic molecules]/[ferrous and ferric ions]). The organic molecules were added before or after the NP synthesis. The addition of these organic molecules modifies the structure, the morphology, the oxidation degree and the growth of the crystallites. Adding the organic mol…
Advances in biogenic synthesis of palladium nanoparticles
2016
Green approaches for the synthesis of nanoparticles provide advantages due to the fact that green protocols are benign and environmentally friendly. Among various green recipes, biogenic synthesis of nanoparticles has recently emerged as an active area of research due to the simplicity of this method, with cost effective protocols, higher potential of reduction and low toxic effect on human health and the environment. Moreover, the biogenic reduction occurs at physiological conditions of temperature and pressure. The raw materials are easily available and therefore, the reaction can easily be scaled up. This paper presents a review to give an idea about the most reliable, cost-effective and…
Iron oxide/oleic acid magnetic nanoparticles possessing biologically active choline derivatives
2018
Abstract In recent years, synthetic magnetic nanoparticles have made a major contribution to biomedicine. Interest in iron oxide magnetic nanoparticles conditioned by the fact that they are nontoxic, and possess the unique opportunity to deliver medicines to certain organs by external magnetic field. We have developed a synthetic procedure, which is based on binding of the first biologically active substance with the magnetic core, and subsequent immobilization of another biologically active substance (ligand) on the modified surface of nanoparticles thus creating plasma membrane-like structures. Using the proposed methodology, we have obtained new nontoxic magnetic nanoparticles, functiona…
Understanding Digestive Ripening of Ligand-Stabilized, Charged Metal Nanoparticles
2017
Most syntheses of thiolate-protected metal nanoparticles (NPs) include a thermochemical step in which the as-prepared, polydisperse NPs are transformed to a narrower size distribution in a poorly understood process known as digestive ripening (DR). Previous theoretical approaches considered either surface and electrostatic contributions or surface and ligand-binding contributions. We show that the three contributions are needed to obtain theoretical predictions in agreement with experimental observations. Although statistical thermodynamics does not clarify mechanistic details, it certainly provides valuable insights on the DR process. Remarkably, a relatively simple theory with no fitting …
Room Temperature Magnetism in Layered Double Hydroxides due to Magnetic Nanoparticles
2013
Some recent reports claiming room temperature spontaneous magnetization in layered double hydroxides (LDHs) have been published; however, the reported materials cause serious concern as to whether this cooperative magnetic behavior comes from extrinsic sources, such as spinel iron oxide nanoparticles. The syntheses of crystalline Fe(3+)-based LDHs with and without impurities have been developed, highlighting the care that must be taken during the synthetic process in order to avoid misidentification of magnetic LDHs.
Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol
2009
Here we report on a new route to synthesize colloidal silver and gold nanoparticles, potentially scalable for massive nanoparticle-production. This method is based on the microwave-assisted heterogeneous reduction of the metal salts with polyvinylalcohol. The reaction is carried out in alcohols, which are non-solvents for polyvinylalcohol. Nanoparticles can be very easily separated by filtration. The reaction kinetics are extremely fast. Size-controlled formation of nanoparticle agglomerates is accomplished with a seed-mediated synthesis of nanoparticles upon MW exposure.
Janus particles: synthesis, self-assembly, physical properties, and applications.
2013
Self-assembly and rheology of dipolar colloids in simple shear studied using multi-particle collision dynamics.
2017
Magnetic nanoparticles in a colloidal solution self-assemble in various aligned structures, which has a profound influence on the flow behavior. However, the precise role of the microstructure in the development of the rheological response has not been reliably quantified. We investigate the self-assembly of dipolar colloids in simple shear using hybrid molecular dynamics and multi-particle collision dynamics simulations with explicit coarse-grained hydrodynamics, conduct simulated rheometric studies and apply micromechanical models to produce master curves, showing evidence of the universality of the structural behavior governed by the competition between the bonding (dipolar) and erosive …