Search results for "Nanopore"

showing 10 items of 99 documents

Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses

2016

[EN] We have arranged two multipore membranes with conical nanopores in a three-compartment electrochemical cell. The membranes act as tunable nanofluidic diodes whose functionality is entirely based on the pH-reversed ion current rectification and does not require specific surface functionalizations. This electrochemical arrangement can display different electrical behaviors (quasi-linear ohmic response and inward/outward rectifications) as a function of the electrolyte concentration in the external solutions and the applied voltage at the pore tips. The multifunctional response permits to implement different logical responses including NOR and INHIBIT functions.

Logic functionsTechnologyMaterials sciencePhysics and Astronomy (miscellaneous)NanotechnologyNanofluidics02 engineering and technology010402 general chemistry01 natural sciencesElectrochemical cellEngineeringRectificationNanofluidic diodesMultipore membranesMultifunctional electrical responseOhmic contactApplied PhysicsDiodepH-reversed rectificationIon current021001 nanoscience & nanotechnology0104 chemical sciencesNanoporeMembraneFISICA APLICADAPhysical Sciences0210 nano-technologyApplied Physics Letters
researchProduct

Electrochemically etched sharp aluminium probes with nanoporous aluminium oxide coatings: demonstration of addressed DNA delivery

2014

Electrochemical etching of metal wires is widely used to fabricate sharp probes for use in scanning tunnelling microscopy. In this work an electrochemical fabrication method for sharp aluminium probes coated with nanoporous anodised aluminium oxide (AAO) layer is described. The method presented here involves simultaneous anodisation and etching of aluminium wires. The probe apex radius as well as the nanopore length and diameter depend on the etching mode, which could be direct current (DC), alternating current (AC), or pulsed voltage mode (PVM). The probes, coated with a nanoporous AAO layer, were used to demonstrate addressed DNA delivery.

Materials science:NATURAL SCIENCES::Chemistry [Research Subject Categories]AnodizingNanoporousGeneral Chemical EngineeringOxidechemistry.chemical_elementNanotechnologyGeneral ChemistryNanoporechemistry.chemical_compoundchemistryEtching (microfabrication)AluminiumAluminium oxideLayer (electronics)RSC Adv.
researchProduct

Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties

2017

[EN] We demonstrate experimentally and theoretically a nanofluidic device for the selective recognition of the cesium ion by exploiting host¿guest interactions inside confined geometry. For this purpose, a host molecule, i.e., the amine-terminated p-tert-butylcalix[4]arene-crown (tBuC[4]C¿NH2), is successfully synthesized and functionalized on the surface of a single conical nanopore fabricated in a poly(ethylene terephthalate) (PET) membrane through carbodiimide coupling chemistry. On exposure to the cesium cation, the t-BuC[4]C¿Cs+ complex is formed through host¿guest interaction, leading to the generation of positive fixed charges on the pore surface. The asymmetrical distribution of the…

Materials scienceAnalytical chemistryChemical modification02 engineering and technologySurfaces and InterfacesConical surface010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAlkali metal01 natural sciences0104 chemical sciencesIonNanoporeMembraneChemical physicsFISICA APLICADAElectrochemistryIonic conductivityMoleculeGeneral Materials Science0210 nano-technologySpectroscopy
researchProduct

Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains.

2009

Single-track conical nanopores functionalized with polyprotic acid chains have pH-sensitive fixed charge groups and show three levels of conductance that allow integrating several functions on a single nanofluidic diode. Nanometer-scaled pores have previously been employed in separation and sensing but not in logic devices, despite the fact that biological ion channels with pH-dependent fixed charges are known to be responsible for information processing in biophysical structures. As a preliminary application, we propose a logic gate scheme where binary and multivalued logical functions are implemented.

Materials scienceBinary numberConductanceNanotechnologySurfaces and InterfacesConical surfaceCondensed Matter PhysicsIonNanoporeFixed chargeLogic gateElectrochemistryGeneral Materials ScienceSpectroscopyDiodeLangmuir : the ACS journal of surfaces and colloids
researchProduct

Variable Thickness Porous Anodic Alumina/Metal Film Bilayers for Optimization of Plasmonic Scattering by Nanoholes on Mirror

2018

Continuously variable thickness porous anodic aluminum oxide (PAAO) films were obtained using electrochemical oxidation of bulk aluminum sheet while both electrodes were simultaneously withdrawn from the electrolyte solution. The thickness gradient was controlled by the withdrawal rate (1–10 mm/min range) and thickness variation demonstrated from below 50 nm to above 1 micrometer. The thickness increased linearly with the sample lateral coordinate, whereas the nanopore structure (diameter and interpore distance) remained unchanged. Effects of the initial pore growth and capillary forces are discussed. The presented method can be used for tuning optimal PAAO thickness for optical and other a…

Materials scienceCapillary actionScatteringGeneral Chemical Engineering02 engineering and technologyGeneral ChemistryElectrolyte010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesArticle0104 chemical sciencesMicrometrelcsh:ChemistryNanoporelcsh:QD1-999ElectrodeComposite material0210 nano-technologyPorosityLayer (electronics)ACS Omega
researchProduct

Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport

2003

Synthetic nanopores with fixed charges exhibit ionic equilibrium and transport properties that resemble those displayed by biological ion channels. We present an electrodiffusion model based on the Nernst-Planck flux equations, which allows for a qualitative description of the steady state ionic transport through a nanopore when the membrane fixed charges and all mobile carriers (including the water ions) are properly taken into account. In particular, we study the current-voltage curve, the electrical conductance, the reversal potential (a measure of the nanopore ionic selectivity), as well as the flux inhibition by protons and divalent cations in the nanopore. The model clearly shows how …

Materials scienceDiffusionBiophysicsIonic bondingNanotechnologyBiophysical PhenomenaIonDiffusionQuantitative Biology::Subcellular ProcessesElectrical resistance and conductanceCationsIonizationIonsPhysics::Biological PhysicsQuantitative Biology::BiomoleculesModels StatisticalSteady stateDose-Response Relationship DrugElectric ConductivityBiological TransportHydrogen-Ion ConcentrationNanoporeMembraneModels ChemicalChemical physicsSaltsProtonsPhysical Review E
researchProduct

Phase Composition and Nanoporous Structure of Core and Surface in the Modified Granules of NH4NO3

2018

The article deals with the study of phase composition and crystal nanoporous structure of core and surface layer of porous ammonium nitrate (PAN). The research results, presented in the article, show that the proposed way to generate PAN allows to provide the granule porous structure without changing of its phase composition. The crystal structure of granules after the humidification and heat treatment has some changes due to the increase of the number of pores. The change of crystal structure, in turn, allows to open access to nanopores that are located in the volume of granules. This allows to increase the holding capacity indicator of granules. An important result of conducted researches…

Materials scienceNanoporous020209 energyAmmonium nitrateDetonation velocityGranule (cell biology)02 engineering and technologyCrystal structureNanoporechemistry.chemical_compound020401 chemical engineeringchemistryChemical engineering0202 electrical engineering electronic engineering information engineeringSurface layer0204 chemical engineeringPorosity
researchProduct

Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields

2012

AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluct…

Materials scienceQC1-999transport dynamics of biomoleculeMonte Carlo methodpolymer moleculespolymer moleculeGeneral Physics and AstronomyQuantitative Biology::Subcellular ProcessesPiecewise linear functionmonte carlo simulationsnoise in biological systemChain (algebraic topology)Electric fieldStatistical physicschemistry.chemical_classificationPhysics::Biological PhysicsQuantitative Biology::Biomoleculestransport dynamics of biomoleculesPhysicsPolymernoise in biological systemsNanoporechemistryChemical physicsCommunication channelVoltageOpen Physics
researchProduct

Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions.

2016

[EN] Membranes with nanofluidic diodes allow the selective control of molecules in physiological salt solutions at ambient temperature. The electrical coupling of the membranes with conventional electronic elements such as capacitors suggests opportunities for the external monitoring of sensors and actuators. We demonstrate experimentally and theoretically the voltage multiplier functionality of simple electrical networks composed of membranes with conical nanopores coupled to load capacitors. The robust operation of half and full wave voltage multipliers is achieved in a broad range of experimental conditions (single pore and multipore membranes, electrolyte concentrations, voltage amplitu…

Materials sciencebusiness.industryAnalytical chemistryGeneral Physics and Astronomy02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionQuantitative Biology::Subcellular ProcessesCapacitorNanoporeMembranelawElectrical networkFISICA APLICADAVoltage multiplierOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessVoltageDiodePhysical chemistry chemical physics : PCCP
researchProduct

Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

2017

[EN] The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits ove…

Materials sciencebusiness.industryGeneral Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionCapacitorNanoporeMembranelawElectrical networkFISICA APLICADAOptoelectronicsElectric current0210 nano-technologybusinessBiosensorElectronic circuitDiode
researchProduct