Search results for "Nanopore"
showing 10 items of 99 documents
Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses
2016
[EN] We have arranged two multipore membranes with conical nanopores in a three-compartment electrochemical cell. The membranes act as tunable nanofluidic diodes whose functionality is entirely based on the pH-reversed ion current rectification and does not require specific surface functionalizations. This electrochemical arrangement can display different electrical behaviors (quasi-linear ohmic response and inward/outward rectifications) as a function of the electrolyte concentration in the external solutions and the applied voltage at the pore tips. The multifunctional response permits to implement different logical responses including NOR and INHIBIT functions.
Electrochemically etched sharp aluminium probes with nanoporous aluminium oxide coatings: demonstration of addressed DNA delivery
2014
Electrochemical etching of metal wires is widely used to fabricate sharp probes for use in scanning tunnelling microscopy. In this work an electrochemical fabrication method for sharp aluminium probes coated with nanoporous anodised aluminium oxide (AAO) layer is described. The method presented here involves simultaneous anodisation and etching of aluminium wires. The probe apex radius as well as the nanopore length and diameter depend on the etching mode, which could be direct current (DC), alternating current (AC), or pulsed voltage mode (PVM). The probes, coated with a nanoporous AAO layer, were used to demonstrate addressed DNA delivery.
Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties
2017
[EN] We demonstrate experimentally and theoretically a nanofluidic device for the selective recognition of the cesium ion by exploiting host¿guest interactions inside confined geometry. For this purpose, a host molecule, i.e., the amine-terminated p-tert-butylcalix[4]arene-crown (tBuC[4]C¿NH2), is successfully synthesized and functionalized on the surface of a single conical nanopore fabricated in a poly(ethylene terephthalate) (PET) membrane through carbodiimide coupling chemistry. On exposure to the cesium cation, the t-BuC[4]C¿Cs+ complex is formed through host¿guest interaction, leading to the generation of positive fixed charges on the pore surface. The asymmetrical distribution of the…
Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains.
2009
Single-track conical nanopores functionalized with polyprotic acid chains have pH-sensitive fixed charge groups and show three levels of conductance that allow integrating several functions on a single nanofluidic diode. Nanometer-scaled pores have previously been employed in separation and sensing but not in logic devices, despite the fact that biological ion channels with pH-dependent fixed charges are known to be responsible for information processing in biophysical structures. As a preliminary application, we propose a logic gate scheme where binary and multivalued logical functions are implemented.
Variable Thickness Porous Anodic Alumina/Metal Film Bilayers for Optimization of Plasmonic Scattering by Nanoholes on Mirror
2018
Continuously variable thickness porous anodic aluminum oxide (PAAO) films were obtained using electrochemical oxidation of bulk aluminum sheet while both electrodes were simultaneously withdrawn from the electrolyte solution. The thickness gradient was controlled by the withdrawal rate (1–10 mm/min range) and thickness variation demonstrated from below 50 nm to above 1 micrometer. The thickness increased linearly with the sample lateral coordinate, whereas the nanopore structure (diameter and interpore distance) remained unchanged. Effects of the initial pore growth and capillary forces are discussed. The presented method can be used for tuning optimal PAAO thickness for optical and other a…
Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport
2003
Synthetic nanopores with fixed charges exhibit ionic equilibrium and transport properties that resemble those displayed by biological ion channels. We present an electrodiffusion model based on the Nernst-Planck flux equations, which allows for a qualitative description of the steady state ionic transport through a nanopore when the membrane fixed charges and all mobile carriers (including the water ions) are properly taken into account. In particular, we study the current-voltage curve, the electrical conductance, the reversal potential (a measure of the nanopore ionic selectivity), as well as the flux inhibition by protons and divalent cations in the nanopore. The model clearly shows how …
Phase Composition and Nanoporous Structure of Core and Surface in the Modified Granules of NH4NO3
2018
The article deals with the study of phase composition and crystal nanoporous structure of core and surface layer of porous ammonium nitrate (PAN). The research results, presented in the article, show that the proposed way to generate PAN allows to provide the granule porous structure without changing of its phase composition. The crystal structure of granules after the humidification and heat treatment has some changes due to the increase of the number of pores. The change of crystal structure, in turn, allows to open access to nanopores that are located in the volume of granules. This allows to increase the holding capacity indicator of granules. An important result of conducted researches…
Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields
2012
AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluct…
Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions.
2016
[EN] Membranes with nanofluidic diodes allow the selective control of molecules in physiological salt solutions at ambient temperature. The electrical coupling of the membranes with conventional electronic elements such as capacitors suggests opportunities for the external monitoring of sensors and actuators. We demonstrate experimentally and theoretically the voltage multiplier functionality of simple electrical networks composed of membranes with conical nanopores coupled to load capacitors. The robust operation of half and full wave voltage multipliers is achieved in a broad range of experimental conditions (single pore and multipore membranes, electrolyte concentrations, voltage amplitu…
Hybrid Circuits with Nanofluidic Diodes and Load Capacitors
2017
[EN] The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits ove…