Search results for "Naturwissenschaften"
showing 10 items of 81 documents
Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run
2018
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…
GW170817: Measurements of Neutron Star Radii and Equation of State
2018
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…
Tests of General Relativity with GW170817
2019
The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…
Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA
2021
Significance Synaptic vesicle (SV) release from presynaptic terminals requires nanometer precise control of action potential (AP)–triggered calcium influx through voltage-gated calcium channels (VGCCs). SV recycling also depends on calcium signals, though in different spatiotemporal domains. Mechanisms for separate control of SV release and recycling by AP-triggered calcium influx remain elusive. Here, we demonstrate largely independent regulation of release and recycling by two different populations of VGCCs (Cav2, Cav1), identify Cav1 as one of potentially multiple calcium entry routes for endocytosis regulation, and show functional separation of simultaneous calcium signals in the nanome…
Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap
2019
Physical review letters 122(4), 043201 (2019). doi:10.1103/PhysRevLett.122.043201
Experimental investigation of low-frequency pulsed Lorentz force influence on the motion of Galinstan melt
2016
Abstract The paper presents the results of the numerical and physical experiments, aimed at assessing the influence of pulsed force of electromagnetic field on the melt motion and the fluid velocities. The experiment was performed on the eutectic alloy Galinstan in the cylindrical volume, where an ultrasonic Doppler velocimeter was employed for velocity measurements under conditions of pulsed and steady EM field application. A numerical simulation of the melt flow, forced by the steady EM force, involved a 2D axisymmetric model. The k-e turbulence model was used to obtain the information about the melt velocities. The verification of the numerical model was carried out for the steady case. …
Influence of the channel design on the heat and mass exchange of induction channel furnace
2011
PurposeThe purpose of this paper is to present in‐depth numerical modelling of heat and mass exchange in industrial induction channel furnace (ICF).Design/methodology/approachThe turbulent heat and mass exchange in the melt is calculated using a three‐dimensional (3D) electromagnetic model and a 3D transient large eddy simulation method. The simulation model has been verified by flow velocity and temperature measurements, which were carried out using an industrial sized channel inductor operating with Wood's metal as a low temperature model melt.FindingsThe ICF is well‐established for melting, holding and casting in the metallurgical industry. But there are still open questions regarding th…
Numerical studies of the melting process in the induction furnace with cold crucible
2008
PurposeAims to present recent activities in numerical modeling of cold crucible melting process.Design/methodology/approach3D numerical analysis was used for electromagnetic problem and 3D large eddy simulation (LES) method was applied for fluid flow modeling.FindingsThe comparative modeling shows, that higher H/D ratio of the melt is more efficient when total power consumption is considered, but this advantage is held back by higher heat losses through the crucible walls. Also, calculations reveal that lower frequencies, which are energetically less effective, provide better mixing of the melt.Originality/value3D electromagnetic model, which allows to take into account non‐symmetrical dist…
Interaction-induced spin polarization in quantum dots.
2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo
2021
This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s-1 Mpc-1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s-1 Mpc-1. A significant …