Search results for "Navier-Stokes"

showing 10 items of 25 documents

Stochastic Galerkin method for cloud simulation

2018

AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results…

010504 meteorology & atmospheric sciencesComputer scienceuncertainty quantificationQC1-999cloud dynamicsFOS: Physical sciencesCloud simulation65m15010103 numerical & computational mathematics01 natural sciencespattern formationMeteorology. ClimatologyFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsStochastic galerkin0105 earth and related environmental sciencesnavier-stokes equationsPhysics65m2565l05Numerical Analysis (math.NA)65m06Computational Physics (physics.comp-ph)stochastic galerkin method35l4535l65finite volume schemesQC851-999Physics - Computational Physicsimex time discretization
researchProduct

Complex singularity analysis for vortex layer flows

2021

We study the evolution of a 2D vortex layer at high Reynolds number. Vortex layer flows are characterized by intense vorticity concentrated around a curve. In addition to their intrinsic interest, vortex layers are relevant configurations because they are regularizations of vortex sheets. In this paper, we consider vortex layers whose thickness is proportional to the square-root of the viscosity. We investigate the typical roll-up process, showing that crucial phases in the initial flow evolution are the formation of stagnation points and recirculation regions. Stretching and folding characterizes the following stage of the dynamics, and we relate these events to the growth of the palinstro…

Physics::Fluid Dynamicsshear layersMechanics of MaterialsMechanical Engineeringfree shear layersNavier-Stokes equationsCondensed Matter PhysicsSettore MAT/07 - Fisica Matematica
researchProduct

Unsteady Separation and Navier-Stokes Solutions at High Reynolds Numbers

2010

We compute the numerical solutions for Navier-Stokes and Prandtl’s equations in the case of a uniform bidimensional flow past an impulsively started disk. The numerical approx- imation is based on a spectral methods imple- mented in a Grid environment. We investigate the relationship between the phenomena of unsteady separation of the flow and the exponential decay of the Fourier spectrum of the solutions. We show that Prandtl’s solution develops a separation singularity in a finite time. Navier-Stokes solutions are computed over a range of Reynolds numbers from 3000 to 50000. We show that the appearance of large gradients of the pressure in the stream- wise direction, reveals that the visc…

Boundary Layer TheoryNavier-Stokes SolutionUnsteady SeparationComplex SingularitieSpectral Methods.Settore MAT/07 - Fisica Matematica
researchProduct

Mikrojärjestelmien virtausdynamiikka numeerisen mallintamisen näkökulmasta

2005

elektroforeesiMEMSelektro-osmoosijatkuvuusteoriaNavier-Stokes yhtälötsähködynamiikkaFemLabmikrovirtausmallinnuselektrokinetiikkadi-elektroforeesiEulerin yhtälötmikrojärjestelmätäärellisten elementtien menetelmä
researchProduct

Analysis of blood flow in one dimensional elastic artery using Navier-Stokes conservation laws

2017

En los últimos años, la simulación computacional en ámbitos médicos ha aumentado notablemente en múltiples ramas de la ciencia, desde modelización a métodos numéricos, pasando por informática. Los principales objetivos de esta disciplina incipiente son comprobar hipótesis antes de una intervención, o ver qué efecto podría tener un medicamento antes de tomarlo, entre otros. En este trabajo deduciremos desde los principios físicos más básicos un modelo unidimensional para la simulación del flujo sanguíneo en arterias elásticas. Proporcionaremos un marco histórico, así como una revisión de este tipo de modelos. Estudiaremos también desde el punto de vista del análisis matemático las ecuaciones…

FEMshock wavetube lawNavier-Stokesarterysimulaciónfluid dynamicssimulationarteriaDiscontinuous Galerkinblood flowelementos finitosUNESCO::FÍSICA::Mecánica::Mecánica de fluídosCFDsangre
researchProduct

Mathematical modelling of alternating electromagnetic and hydrodynamic fields, induced by bar type conductors in a cylinder

2009

The heating of buildings by ecologically clean and compact local devices is an interesting and actual problem. One of the modern areas of applications developed during last ten years is an effective usage of electrical energy by alternating current to produce heat energy. This work presents the mathematical model of one of such devices. It is a finite cylinder with viscous incompressible liquid and with metal electrodes of the form of bars placed parallel to the cylinder axis in the liquid. These conductors are connected to the alternating current. First published online: 14 Oct 2010

Work (thermodynamics)Bar (music)Electric potential energyelectrically conducting liquidMechanicslaw.inventionPhysics::Fluid DynamicsClassical mechanicslawModeling and SimulationQA1-939CompressibilityCylinderNavier-Stokes equationsAlternating currentNavier–Stokes equationsalternating currentElectrical conductorMathematicsAnalysisMathematicsMathematical Modelling and Analysis
researchProduct

The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

2008

We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilo…

Stokes equation01 natural sciencesHomogenization (chemistry)Navier-Stokes equationPhysics::Fluid DynamicsMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsMathematical Physics(MSC) 35Q30 35B27 76M50Particle systemPhysicsHomogenization010102 general mathematicsMathematical analysis35Q30 35B27 76M50Stokes equationsStatistical and Nonlinear Physics010101 applied mathematicsFlow velocityDragSuspension FlowsBounded functionCompressibilityBall (bearing)Navier-Stokes equationsAnalysis of PDEs (math.AP)
researchProduct

A High-Resolution Penalization Method for large Mach number Flows in the presence of Obstacles

2009

International audience; A penalization method is applied to model the interaction of large Mach number compressible flows with obstacles. A supplementary term is added to the compressible Navier-Stokes system, seeking to simulate the effect of the Brinkman-penalization technique used in incompressible flow simulations including obstacles. We present a computational study comparing numerical results obtained with this method to theoretical results and to simulations with Fluent software. Our work indicates that this technique can be very promising in applications to complex flows.

General Computer ScienceComputational fluid dynamics01 natural sciencesCompressible flow010305 fluids & plasmas[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]Physics::Fluid DynamicsShock Waves.symbols.namesakeIncompressible flow0103 physical sciencesPenalty methodComplex geometries[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]0101 mathematicsBrinkman PenalizationChoked flowMathematicsbusiness.industry[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentGeneral EngineeringMechanics[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation010101 applied mathematicsClassical mechanicsCompressible Navier-Stokes EquationsMach numberShock WavesMesh generationCompressibilitysymbolsbusiness[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY

2016

This article proposes a derivation of the Vlasov-Navier-Stokes system for spray/aerosol flows. The distribution function of the dispersed phase is governed by a Vlasov-equation, while the velocity field of the propellant satisfies the Navier-Stokes equations for incompressible fluids. The dynamics of the dispersed phase and of the propellant are coupled through the drag force exerted by the propellant on the dispersed phase. We present a formal derivation of this model from a multiphase Boltzmann system for a binary gaseous mixture, involving the droplets/dust particles in the dispersed phase as one species, and the gas molecules as the other species. Under suitable assumptions on the colli…

MSC: 35Q20 35B25 (82C40 76T15 76D05)aerosolVlasov-Navier-Stokes systemGeneral Mathematics01 natural sciencesPhysics::Fluid DynamicsBoltzmann equationsymbols.namesakeMathematics - Analysis of PDEsThermal velocityPhase (matter)35Q20 35B25 (82C40 76T15 76D05)SpraysFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsSettore MAT/07 - Fisica MatematicaPhysicsPropellantAerosolsGas mixtureApplied Mathematics010102 general mathematicsMechanicsMass ratioBoltzmann equationAerosol010101 applied mathematicsDistribution functionsprayBoltzmann constantsymbolsHydrodynamic limitAnalysis of PDEs (math.AP)
researchProduct

Formation of Coherent Structures in Kolmogorov Flow with Stratification and Drag

2014

We study a weakly stratified Kolmogorov flow under the effect of a small linear drag. We perform a linear stability analysis of the basic state. We construct the finite dimensional dynamical system deriving from the truncated Fourier mode approximation. Using the Reynolds number as bifurcation parameter we build the corresponding diagram up to Re=100. We observe the coexistence of three coherent structures.

Partial differential equationApplied MathematicsDiagramMathematical analysisReynolds numberDynamical systemPhysics::Fluid DynamicsLinear stability analysisymbols.namesakeFourier transformBifurcation theoryDragsymbolsBifurcation theoryEquilibriaTruncated Navier-Stokes equationsSettore MAT/07 - Fisica MatematicaBifurcationMathematics
researchProduct