Search results for "Nerve"

showing 10 items of 1683 documents

Transient hypothyroidism during lactation alters the development of the corpus callosum in rats. An in vivo magnetic resonance image and electron mic…

2020

Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated r…

0301 basic medicineneocortical developmentmedicine.medical_specialtyNeuroscience (miscellaneous)autismattention deficit/hyperactivity disorderCorpus callosumNerve conduction velocitylcsh:RC321-571lcsh:QM1-695law.invention03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineIn vivolawInternal medicineLactationmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchthyroid hormonesiodine dietmedicine.diagnostic_testbusiness.industrycongenital hypothyroidismpsychiatric diseasesMagnetic resonance imaginglcsh:Human anatomyCommissuremedicine.diseaseCongenital hypothyroidismNeuroanatomy030104 developmental biologyEndocrinologymedicine.anatomical_structureAnatomyElectron microscopebusiness030217 neurology & neurosurgery
researchProduct

STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation

2019

Summary Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerbors…

0301 basic medicinereactivationendocrine systemMitosisNerve Tissue ProteinsProtein Serine-Threonine KinasesBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically ModifiedPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineNeural Stem CellsAnimalsDrosophila ProteinsquiescenceProtein Phosphatase 2lcsh:QH301-705.5Protein kinase BCells CulturedPI3K/AKT/mTOR pathwayTissue homeostasisAdaptor Proteins Signal TransducingCell ProliferationHippo signaling pathwayGene Expression ProfilingHippo signalingInR/PI3K/Akt signalingfungiIntracellular Signaling Peptides and ProteinsBrainSTRIPAK membersProtein phosphatase 2Receptor InsulinNeural stem cellCell biologyDrosophila melanogaster030104 developmental biologylcsh:Biology (General)nervous systemHippo signalingSingle-Cell AnalysisTranscriptomeProto-Oncogene Proteins c-akt030217 neurology & neurosurgeryAdult stem cellCell Reports
researchProduct

Sural nerve biopsy studies in leigh's subacute necrotizing encephalomyelopathy

1986

Peripheral neuropathy marked by reduced nerve conduction velocities was found in four unrelated children, between the ages of 15 months and 9 years, whose autopsies revealed Leigh's subacute necrotizing encephalomyelopathy. Sural nerve biopsies disclosed primary demyelination and remyelination, as well as loss of myelinated and unmyelinated axons. The use of morphometric and electron microscopic studies shows that these techniques may reveal peripheral neuropathy in Leigh's disease more often than light microscopic methods alone.

0303 health sciencesPathologymedicine.medical_specialtymedicine.diagnostic_testPhysiologyPrimary demyelinationbusiness.industrySural nerveSural nerve biopsymedicine.disease03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicine.anatomical_structurePeripheral neuropathyPhysiology (medical)BiopsymedicineNeurology (clinical)RemyelinationLeigh diseasebusinessElectron microscopic030217 neurology & neurosurgery030304 developmental biologyMuscle & Nerve
researchProduct

2019

AbstractDuring early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in theDrosophilagiant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated…

0303 health sciencesVoltage-gated ion channelInterneuronAction potentialVoltage-dependent calcium channelChemistryGeneral NeuroscienceGeneral MedicinePotassium channelNerve conduction velocity03 medical and health sciences0302 clinical medicinemedicine.anatomical_structurenervous systemmedicineBiophysicsAxon030217 neurology & neurosurgeryIon channel030304 developmental biologyeNeuro
researchProduct

2015

The clarification of complete cell lineages, which are produced by specific stem cells, is fundamental for understanding mechanisms, controlling the generation of cell diversity and patterning in an emerging tissue. In the developing Central Nervous System (CNS) of Drosophila, neural stem cells (neuroblasts) exhibit two periods of proliferation: During embryogenesis they produce primary lineages, which form the larval CNS. After a phase of mitotic quiescence, a subpopulation of them resumes proliferation in the larva to give rise to secondary lineages that build up the CNS of the adult fly. Within the ventral nerve cord (VNC) detailed descriptions exist for both primary and secondary lineag…

0303 health sciencesfungiEmbryogenesisAnatomyBiologyNeuromereEmbryonic stem cellGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellCell biology03 medical and health sciences0302 clinical medicineNeuroblastVentral nerve cordStem cellGeneral Agricultural and Biological SciencesGanglion mother cell030217 neurology & neurosurgery030304 developmental biologyBiology Open
researchProduct

In Vivo Reprogramming for Brain and Spinal Cord Repair.

2015

AbstractCell reprogramming technologies have enabled the generation of various specific cell types including neurons from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell production and purification, long-term survival, and functional integration after transplantation. Recently,in vivoreprogramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to circumvent cell transplantation. There has been evidence forin vivoreprogramming in the mouse pancreas, heart, and brain and spinal cord with …

7NeurogenesisCellReviewBiologyNovel Tools and Methods03 medical and health sciences0302 clinical medicineastrocytemedicineAnimalsHumansCellular Reprogramming Techniques030304 developmental biologyNeurons0303 health sciencesCellular Reprogramming TechniquesGeneral NeuroscienceRegeneration (biology)brain repairNeurogenesisBrainreprogrammingGeneral MedicineCongresses as TopicCellular ReprogrammingneuronNerve RegenerationTransplantationin vivomedicine.anatomical_structureSpinal CordDistrict of ColumbiaNG2 cellNeuronReprogrammingNeuroscience030217 neurology & neurosurgeryAstrocyteeNeuro
researchProduct

9-cis-Retinoic acid enhances fatty acid-induced expression of the liver fatty acid-binding protein gene

1997

The role of retinoic acids (RA) on liver fatty acid- binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-ci's-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10 -6 M 9-CK-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-c/s-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome prol…

9-cw-Retinoic acidReceptors Retinoic Acid[SDV]Life Sciences [q-bio]Receptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorMyelin P2 ProteinMicrobodiesBiochemistry0302 clinical medicineStructural BiologyTumor Cells CulturedAlitretinoinchemistry.chemical_classification0303 health sciencesChemistryFatty AcidsDrug SynergismPeroxisomeNeoplasm Proteins9-cis-Retinoic acidLiverBiochemistryFree fatty acid receptorlipids (amino acids peptides and proteins)Peroxisome proliferator-activated receptor alphaLong chain fatty acidFatty Acid-Binding Protein 7DimerizationPeroxisome proliferator-activated receptor gammaCarcinoma HepatocellularBiophysicsNerve Tissue ProteinsTretinoinRetinoid X receptorFatty Acid-Binding ProteinsLiver fatty acid-binding protein03 medical and health sciencesGeneticsAnimalsRNA MessengerMolecular Biology030304 developmental biologyFAO hepatoma cellFatty acidCell BiologyFatty acidRatsRetinoid X ReceptorsGene Expression RegulationNuclear receptorGene expressionCarrier Proteins[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryTranscription FactorsFEBS Letters
researchProduct

Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the a…

2015

Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of his…

:Phenomena and Processes::Physiological Phenomena::Physiological Processes::Growth and Development::Morphogenesis::Embryonic and Fetal Development::Organogenesis::Neurogenesis [Medical Subject Headings]CB1 receptorTubulina (proteína)Cannabinoid receptorCarbamatosEtanol:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nuclear Proteins::Histones [Medical Subject Headings]Ventrículos lateralesSacarosaNeuronasSubgranular zone0302 clinical medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB1 [Medical Subject Headings]Histonas:Chemicals and Drugs::Organic Chemicals::Carboxylic Acids::Acids Acyclic::Carbamates [Medical Subject Headings]Receptor cannabinoide CB1Cannabinoid receptor type 2:Organisms::Eukaryota::Animals [Medical Subject Headings]:Phenomena and Processes::Metabolic Phenomena::Metabolism::Phosphorylation [Medical Subject Headings]:Anatomy::Cells::Stem Cells::Neural Stem Cells [Medical Subject Headings]:Anatomy::Nervous System::Neurons [Medical Subject Headings]health care economics and organizations:Anatomy::Nervous System::Central Nervous System::Brain::Cerebral Ventricles::Lateral Ventricles [Medical Subject Headings]Original Research:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Nucleosides::Deoxyribonucleosides::Deoxyuridine::Bromodeoxyuridine [Medical Subject Headings]0303 health sciencesAlcoholismoalcoholConsumo de alcoholNeurogenesis:Phenomena and Processes::Genetic Phenomena::Phenotype::Genetic Markers [Medical Subject Headings]:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Cannabinoid Receptor Modulators::Cannabinoid Receptor Agonists [Medical Subject Headings]Benzamidas:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB2 [Medical Subject Headings]Endocannabinoid system3. Good healthbromodesoxiuridinaneurogenesisEndocannabinoidesmedicine.anatomical_structure:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases [Medical Subject Headings]ACEADietaAlcoholFosforilaciónAgonistmedicine.medical_specialtyHidrolasasmedicine.drug_classNeurogenesiseducation:Psychiatry and Psychology::Mental Disorders::Substance-Related Disorders::Alcohol-Related Disorders::Alcoholism [Medical Subject Headings]Subventricular zoneBiology:Phenomena and Processes::Physiological Phenomena::Nutritional Physiological Phenomena::Diet [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Telencephalon::Cerebrum::Cerebral Cortex::Hippocampus::Dentate Gyrus [Medical Subject Headings]lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceRatasInternal medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nerve Tissue Proteins::Tubulin [Medical Subject Headings]JWH133medicineGiro dentadolcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyCélulas madre nerviosas:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Endocannabinoids [Medical Subject Headings]Dentate gyrusmarcadores genéticosCB2 receptor:Chemicals and Drugs::Carbohydrates::Polysaccharides::Oligosaccharides::Disaccharides::Sucrose [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Diencephalon::Hypothalamus [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Alcohols::Ethanol [Medical Subject Headings]Endocrinology:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Rats [Medical Subject Headings]nervous system:Psychiatry and Psychology::Behavior and Behavior Mechanisms::Behavior::Drinking Behavior::Alcohol Drinking [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Amides::Benzamides [Medical Subject Headings]030217 neurology & neurosurgeryHipotálamoNeuroscience
researchProduct

Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of…

2021

Abstract Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer’s disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer’s disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuropro…

ADAM10Clinical BiochemistryNerve Tissue ProteinsTropomyosin receptor kinase BReceptors Nerve Growth FactorBiochemistryNeuroprotectionADAM10 ProteinAmyloid beta-Protein PrecursorNeurotrophic factorsAlzheimer DiseaseAmyloid precursor proteinHumansReceptor trkBMolecular BiologyLDL-Receptor Related ProteinsAmyloid beta-PeptidesMembrane GlycoproteinsbiologyBrain-Derived Neurotrophic FactorMembrane ProteinsMembrane Transport ProteinsAdaptor Proteins Vesicular Transportnervous systembiology.proteinSignal transductionAmyloid Precursor Protein SecretasesNeuroscienceAmyloid precursor protein secretaseNeurotrophinBiological chemistryReferences
researchProduct

Central functional response to the novel peptide cannabinoid, hemopressin.

2013

Hemopressin is the first peptide ligand to be described for the CB₁ cannabinoid receptor. Hemopressin acts as an inverse agonist in vivo and can cross the blood-brain barrier to both inhibit appetite and induce antinociception. Despite being highly effective, synthetic CB₁ inverse agonists are limited therapeutically due to unwanted, over dampening of central reward pathways. However, hemopressin appears to have its effect on appetite by affecting satiety rather than reward, suggesting an alternative mode of action which might avoid adverse side effects. Here, to resolve the neuronal circuitry mediating hemopressin's actions, we have combined blood-oxygen-level-dependent, pharmacological-ch…

AM251MaleCannabinoid receptorHypothalamus MiddleNerve Tissue ProteinsNucleus accumbensSatiety ResponseRats Sprague-DawleyCellular and Molecular Neurosciencechemistry.chemical_compoundHemoglobinsMiceRandom AllocationPiperidinesReceptor Cannabinoid CB1Appetite DepressantsmedicineInverse agonistAnimalsPeriaqueductal GrayPharmacologyMice KnockoutNeuronsBehavior AnimalCannabinoidsHemopressinPeptide FragmentsRatsVentral tegmental areamedicine.anatomical_structurechemistryPyrazolesRaphe NucleiBrain stimulation rewardRaphe nucleiPsychologyNeuroscienceInjections Intraperitonealmedicine.drugNeuropharmacology
researchProduct