Search results for "Neumann boundary condition"

showing 10 items of 53 documents

Probabilistic interpretation of the Calderón problem

2017

In this paper, we use the theory of symmetric Dirichlet forms to give a probabilistic interpretation of Calderon's inverse conductivity problem in terms of reflecting diffusion processes and their corresponding boundary trace processes. This probabilistic interpretation comes in three equivalent formulations which open up novel perspectives on the classical question of unique determinability of conductivities from boundary data. We aim to make this work accessible to both readers with a background in stochastic process theory as well as researchers working on deterministic methods in inverse problems.

Control and OptimizationStochastic processComputer science010102 general mathematicsProbabilistic logicBoundary (topology)Inverse problem01 natural sciencesDirichlet distributionInterpretation (model theory)010104 statistics & probabilitysymbols.namesakeModeling and SimulationNeumann boundary conditionsymbolsDiscrete Mathematics and CombinatoricsApplied mathematics0101 mathematicsAnalysisTRACE (psycholinguistics)Inverse Problems & Imaging
researchProduct

Multiple solutions with sign information for semilinear Neumann problems with convection

2019

We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).

ConvectionTruncationGeneral Mathematics010102 general mathematicsMathematical analysisMultiplicity (mathematics)Type (model theory)Convection01 natural sciencesIndefinite drift coefficientExtremal constant sign solution010101 applied mathematicsMonotone polygonFlow (mathematics)Settore MAT/05 - Analisi MatematicaConstant sign and nodal solutionNeumann boundary conditionFlow invariance0101 mathematicsSign (mathematics)MathematicsRevista Matemática Complutense
researchProduct

On Boundary Value Problems for ϕ-Laplacian on the Semi-Infinite Interval

2017

The Dirichlet problem and the problem with functional boundary condition for ϕ-Laplacian on the semi-infinite interval are studied as well as solutions between the lower and upper functions.

Dirichlet problem010102 general mathematicsMathematical analysislower and upper functionsMixed boundary conditionMathematics::Spectral Theory01 natural sciencesRobin boundary conditionElliptic boundary value problemϕ-Laplacian010101 applied mathematicssymbols.namesakeModeling and SimulationDirichlet boundary conditionboundary value problemFree boundary problemsymbolsNeumann boundary conditionQA1-939Boundary value problem0101 mathematicsAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

Minimizing total variation flow

2000

We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.

Dirichlet problem35K90Partial differential equationMeasurable functionApplied MathematicsMathematical analysis35B40Existence theorem35K65General Medicine35D0535K60Maxima and minimaUniqueness theorem for Poisson's equation35K55Neumann boundary conditionUniquenessAnalysisMathematics
researchProduct

Some qualitative properties for the total variation flow

2002

We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…

Dirichlet problemAsymptotic behaviourMathematical analysisGeodetic datumElliptic boundary value problemOperator (computer programming)Dirichlet eigenvaluePropagation of the supportFlow (mathematics)Neumann boundary conditionNonlinear parabolic equationsPoint (geometry)Total variation flowEigenvalue type problemAnalysisMathematics
researchProduct

Sur les problèmes d'optimisation structurelle

2000

We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed

Dirichlet problemCharacteristic function (probability theory)CalculusNeumann boundary conditionApplied mathematicsExistence theoremBoundary (topology)Shape optimizationGeneral MedicineBoundary value problemOptimal controlMathematics
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Quasihyperbolic boundary conditions and Poincaré domains

2002

We prove that a domain in ${\Bbb R}^n$ whose quasihyperbolic metric satisfies a logarithmic growth condition with coefficient $\beta\le 1$ is a (q,p)-\Poincare domain for all p and q satisfying $p\in[1,\infty)\cap(n-n\beta,n)$ and $q\in[p,\beta p^*)$ , where $p^*=np/(n-p)$ denotes the Sobolev conjugate exponent. An elementary example shows that the given ranges for p and q are sharp. The proof makes use of estimates for a variational capacity. When p=2 we give an application to the solvability of the Neumann problem on domains with irregular boundaries. We also discuss the relationship between this growth condition on the quasihyperbolic metric and the s-John condition.

Discrete mathematicsPure mathematicsGeneral MathematicsLogarithmic growthA domainSobolev spacesymbols.namesakePoincaré conjectureExponentNeumann boundary conditionsymbolsBeta (velocity)Boundary value problemMathematicsMathematische Annalen
researchProduct

A second-order sparse factorization method for Poisson's equation with mixed boundary conditions

1992

Abstract We propose an algorithm for solving Poisson's equation on general two-dimensional regions with an arbitrary distribution of Dirichlet and Neumann boundary conditions. The algebraic system, generated by the five-point star discretization of the Laplacian, is solved iteratively by repeated direct sparse inversion of an approximating system whose coefficient matrix — the preconditioner — is second-order both in the interior and on the boundary. The present algorithm for mixed boundary value problems generalizes a solver for pure Dirichlet problems (proposed earlier by one of the authors in this journal (1989)) which was found to converge very fast for problems with smooth solutions. T…

Fast solverPreconditionerfactorization methodApplied MathematicsMathematical analysisBoundary (topology)Dirichlet and Neumann conditionsMixed boundary conditionPreconditioned Conjugate Gradient methodComputational Mathematicssymbols.namesakeDirichlet boundary conditionConjugate gradient methodgeneral regionsNeumann boundary conditionsymbolsBoundary value problemPoisson's equationMathematicsJournal of Computational and Applied Mathematics
researchProduct