Search results for "Neumann boundary condition"
showing 10 items of 53 documents
Probabilistic interpretation of the Calderón problem
2017
In this paper, we use the theory of symmetric Dirichlet forms to give a probabilistic interpretation of Calderon's inverse conductivity problem in terms of reflecting diffusion processes and their corresponding boundary trace processes. This probabilistic interpretation comes in three equivalent formulations which open up novel perspectives on the classical question of unique determinability of conductivities from boundary data. We aim to make this work accessible to both readers with a background in stochastic process theory as well as researchers working on deterministic methods in inverse problems.
Multiple solutions with sign information for semilinear Neumann problems with convection
2019
We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).
On Boundary Value Problems for ϕ-Laplacian on the Semi-Infinite Interval
2017
The Dirichlet problem and the problem with functional boundary condition for ϕ-Laplacian on the semi-infinite interval are studied as well as solutions between the lower and upper functions.
Minimizing total variation flow
2000
We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.
Some qualitative properties for the total variation flow
2002
We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…
Sur les problèmes d'optimisation structurelle
2000
We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed
Nonlinear diffusion in transparent media: the resolvent equation
2017
Abstract We consider the partial differential equation u - f = div ( u m ∇ u | ∇ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.
Nonlinear Diffusion in Transparent Media
2021
Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.
Quasihyperbolic boundary conditions and Poincaré domains
2002
We prove that a domain in ${\Bbb R}^n$ whose quasihyperbolic metric satisfies a logarithmic growth condition with coefficient $\beta\le 1$ is a (q,p)-\Poincare domain for all p and q satisfying $p\in[1,\infty)\cap(n-n\beta,n)$ and $q\in[p,\beta p^*)$ , where $p^*=np/(n-p)$ denotes the Sobolev conjugate exponent. An elementary example shows that the given ranges for p and q are sharp. The proof makes use of estimates for a variational capacity. When p=2 we give an application to the solvability of the Neumann problem on domains with irregular boundaries. We also discuss the relationship between this growth condition on the quasihyperbolic metric and the s-John condition.
A second-order sparse factorization method for Poisson's equation with mixed boundary conditions
1992
Abstract We propose an algorithm for solving Poisson's equation on general two-dimensional regions with an arbitrary distribution of Dirichlet and Neumann boundary conditions. The algebraic system, generated by the five-point star discretization of the Laplacian, is solved iteratively by repeated direct sparse inversion of an approximating system whose coefficient matrix — the preconditioner — is second-order both in the interior and on the boundary. The present algorithm for mixed boundary value problems generalizes a solver for pure Dirichlet problems (proposed earlier by one of the authors in this journal (1989)) which was found to converge very fast for problems with smooth solutions. T…