Search results for "Neural Stem Cell"
showing 10 items of 250 documents
Cells expressing markers of immature neurons in the amygdala of adult humans
2012
The polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) is expressed by immature neurons in the amygdala of adult mammals, including non-human primates. In a recent report we have also described the presence of PSA-NCAM-expressing cells in the amygdala of adult humans. Although many of these cells have been classified as mature interneurons, some of them lacked mature neuronal markers, suggesting the presence of immature neurons. We have studied, using immunohistochemistry, the existence and distribution of these immature neurons using post mortem material. We have also analysed the presence of proliferating cells and the association between immature neurons and specialise…
Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells
2005
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary a…
Homozygous variants in the gene SCAPER cause syndromic intellectual disability
2019
The S-Phase Cyclin A Associated Protein In The ER (SCAPER) gene is a ubiquitously expressed gene with unknown function in the brain. Recently, biallelic SCAPER variants were described in four patients from three families with retinitis pigmentosa (RP) and intellectual disability (ID). Here, we expand the spectrum of pathogenic variants in SCAPER and report on 10 further patients from four families with ID, RP, and additional dysmorphic features carrying homozygous variants in SCAPER. The variants found comprise frameshift, nonsense, and missense variants as well as an intragenic homozygous deletion, which spans SCAPER exons 15 and 16 and introduces a frameshift and a premature stop codon. A…
Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program
2018
Ectopic expression of defined transcription factors can force direct cell-fate conversion from one lineage to another in the absence of cell division. Several transcription factor cocktails have enabled successful reprogramming of various somatic cell types into induced neurons (iNs) of distinct neurotransmitter phenotype. However, the nature of the intermediate states that drive the reprogramming trajectory toward distinct iN types is largely unknown. Here we show that successful direct reprogramming of adult human brain pericytes into functional iNs by Ascl1 and Sox2 encompasses transient activation of a neural stem cell-like gene expression program that precedes bifurcation into distinct…
Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration.
2014
Increased neurogenesis has been reported in neurodegenerative disease, but its significance is unclear. In a mouse model of prion disease, Gomez-Nicola et al. detect increased neurogenesis in the dentate gyrus that partially counteracts neuronal loss. Targeting neurogenesis may have therapeutic potential.
Reprogramming of Pericyte-Derived Cells of the Adult Human Brain into Induced Neuronal Cells
2012
SummaryReprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrat…
Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells.
2008
Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2…
The aged brain: Genesis and fate of residual progenitor cells in the subventricular zone
2015
Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is no…
Telomere Shortening in Neural Stem Cells Disrupts Neuronal Differentiation and Neuritogenesis
2009
Proliferation in the subependymal zone (SEZ) and neurogenesis in the olfactory bulb decline in the forebrain of telomerase-deficient mice. The present work reveals additional effects of telomere shortening on neuronal differentiation, as adult multipotent progenitors with critically short telomeres yield reduced numbers of neurons that, furthermore, exhibit underdeveloped neuritic arbors. Genetic data indicate that the tumor suppressor protein p53 not only mediates the adverse effects of telomere attrition on proliferation and self-renewal but it is also involved in preventing normal neuronal differentiation of adult progenitors with dysfunctional telomeres. Interestingly, progenitor cells …
Intra-operatively obtained human tissue: Protocols and techniques for the study of neural stem cells
2009
The discoveries of neural (NSCs) and brain tumor stem cells (BTSCs) in the adult human brain and in brain tumors, respectively, have led to a new era in neuroscience research. These cells represent novel approaches to studying normal phenomena such as memory and learning, as well as pathological conditions such as Parkinson's disease, stroke, and brain tumors. This new paradigm stresses the importance of understanding how these cells behave in vitro and in vivo. It also stresses the need to use human-derived tissue to study human disease because animal models may not necessarily accurately replicate the processes that occur in humans. An important, but often underused, source of human tissu…