Search results for "Neurogenesis"
showing 10 items of 336 documents
Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells
2005
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary a…
Reduced Sympathetic Innervation in Endometriosis is Associated to Semaphorin 3C and 3F Expression
2016
Endometriosis is a chronic inflammatory disease and one of the most common causes of pelvic pain. The mechanisms underlying pain emergence or chronic inflammation during endometriosis remain unknown. Several chronic inflammatory diseases including endometriosis show reduced amounts of noradrenergic nerve fibers. The source of the affected innervation is still unclear. Semaphorins represent potential elicitors, due to their known role as axonal guidance cues, and are suggested as nerve repellent factors in different chronic inflammatory diseases. Therefore, semaphorins might influence the progress of neuroinflammatory mechanisms during endometriosis. Here, we analyzed the noradrenergic inner…
Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration.
2014
Increased neurogenesis has been reported in neurodegenerative disease, but its significance is unclear. In a mouse model of prion disease, Gomez-Nicola et al. detect increased neurogenesis in the dentate gyrus that partially counteracts neuronal loss. Targeting neurogenesis may have therapeutic potential.
Reprogramming of Pericyte-Derived Cells of the Adult Human Brain into Induced Neuronal Cells
2012
SummaryReprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrat…
The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies.
1999
The etiology and pathogenesis of complex focal lesions associated with chronic, intractable epilepsy are largely unknown. Some data indicate that malformative changes of the central nervous system may preceed the development of gangliogliomas and other epilepsy-associated neoplasms. In the present immunhistochemical study, we have examined epilepsy-associated lesions for CD34, a stem cell marker transiently expressed during early neurulation. Surprisingly, most tissue samples from patients with chronic epilepsy (n = 262) revealed neural cells immunoreactive for CD34. Prominent immunoreactivity was detected in gangliogliomas (74%), low-grade astrocytomas (62%) and oligodendrogliomas (59%). O…
Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells.
2008
Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2…
The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain.
2009
Neurogenesis occurs in two regions of the adult brain, namely, the subventricular zone (SVZ) throughout the wall of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG) in hippocampal formation. Adult neurogenesis requires several neurotrophic factors to sustain and regulate the proliferation and differentiation of the adult stem cell population. In the present review, we examine the cellular and functional aspects of a trophic system mediated by fibroblast growth factor-2 (FGF-2) and its receptors (FGFRs) related to neurogenesis in the SVZ and SGZ of the adult rat brain. In the SVZ, FGF-2 is expressed in GFAP-positive cells of SVZ but is not present in proliferati…
The aged brain: Genesis and fate of residual progenitor cells in the subventricular zone
2015
Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is no…
Telomere Shortening in Neural Stem Cells Disrupts Neuronal Differentiation and Neuritogenesis
2009
Proliferation in the subependymal zone (SEZ) and neurogenesis in the olfactory bulb decline in the forebrain of telomerase-deficient mice. The present work reveals additional effects of telomere shortening on neuronal differentiation, as adult multipotent progenitors with critically short telomeres yield reduced numbers of neurons that, furthermore, exhibit underdeveloped neuritic arbors. Genetic data indicate that the tumor suppressor protein p53 not only mediates the adverse effects of telomere attrition on proliferation and self-renewal but it is also involved in preventing normal neuronal differentiation of adult progenitors with dysfunctional telomeres. Interestingly, progenitor cells …
Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothal…
2015
Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamine…