Search results for "Neurogenesis"
showing 10 items of 336 documents
Successive specification ofDrosophilaneuroblasts NB 6-4 and NB 7-3 depends on interaction of the segment polarity geneswingless,gooseberryandnaked cu…
2001
The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts,…
The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster.
1991
ABSTRACT Embryonic and postembryonic neuroblasts in the thoracic ventral nerve cord of Drosophila melanogaster have the same origin. We have traced the development of threefold-labelled single precursor cells from the early gastrula stage to late larval stages. The technique allows in the same individual monitoring of progeny cells at embryonic stages (in vivo) and differentially staining embryonic and postembryonic progeny within the resulting neural clone at late postembryonic stages. The analysis reveals that postembryonic cells always appear together with embryonic cells in one clone. Further-more, BrdU labelling suggests that the embryonic neuroblast itself rather than one of its proge…
Stage-specific inductive signals in the Drosophila neuroectoderm control the temporal sequence of neuroblast specification.
2001
One of the initial steps of neurogenesis in the Drosophila embryo is the delamination of a stereotype set of neural progenitor cells (neuroblasts) from the neuroectoderm. The time window of neuroblast segregation has been divided into five successive waves (S1-S5) in which subsets of neuroblasts with specific identities are formed. To test when identity specification of the various neuroblasts takes place and whether extrinsic signals are involved, we have performed heterochronic transplantation experiments. Single neuroectodermal cells from stage 10 donor embryos (after S2) were transplanted into the neuroectoderm of host embryos at stage 7 (before S1) and vice versa. The fate of these cel…
Adult-derived neural precursors transplanted into multiple regions in the adult brain
1999
Neural stem cells persist in the adult brain subventricular zone (SVZ). These cells generate a large number of new neurons that migrate to the olfactory bulb, where they complete their differentiation. Here, we transplanted cells carrying beta-galactosidase under the control of neuron-specific enolase promoter (NSE::LacZ) from the SVZ of adult mice into the striatum cortex and olfactory bulb, with or without an excitotoxin lesion. Between 2 and 8 weeks after transplantation, grafted cells were present in the recipient regions, but extensive migration and differentiation into mature neurons of grafted cells were only observed in the olfactory bulb. Clusters of graft-derived neuroblasts formi…
Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool
2008
Cerebellar granule cell precursors (GCPs), which give rise to the most abundant neuronal type in the mammalian brain, arise from a restricted pool of primary progenitors in the rhombic lip (RL). Sonic hedgehog (Shh) secreted by developing Purkinje cells is essential for the expansion of GCPs and for cerebellar morphogenesis. Recent studies have shown that the primary cilium concentrates components of Shh signaling and that this structure is required for Shh signaling. GCPs have a primary cilium on their surface [Del Cerro, M.P., Snider, R.S. (1972). Studies on the developing cerebellum. II. The ultrastructure of the external granular layer. J Comp Neurol 144, 131-64.]. Here, we show that 1)…
Semaphorin 6A Improves Functional Recovery in Conjunction with Motor Training after Cerebral Ischemia
2010
Stroke is a major health problem in industrialized societies. Despite numerous attempts at developing acute stroke therapies aimed at minimizing acute infarct development, the only approved therapy so far is recombinant tissue plasminogen activator (rtPA). In recent years, the attention of the stroke community has therefore also put increased emphasis on understanding processes of post-stroke recovery, and their potential exploitability for therapeutic purposes. The brain has a remarkable ability to adapt to changes after stroke. Mechanisms that contribute to this plasticity are re-mapping and expansion of cortical areas to neighboring regions of functional motor cortex areas after injury […
In‐TOX‐icating neurogenesis
2015
Major efforts are invested to characterize the factors controlling the proliferation of neural stem cells. During mammalian corticogenesis, our group has identified a small pool of genes that are transiently downregulated in the switch of neural stem cells to neurogenic division and reinduced in newborn neurons. Among these switch genes, we found Tox, a transcription factor with hitherto uncharacterized roles in the nervous system. Here, we investigated the role of Tox in corticogenesis by characterizing its expression at the tissue, cellular and temporal level. We found that Tox is regulated by calcineurin/Nfat signalling. Moreover, we combined DNA adenine methyltransferase identification …
Postnatal neurogenesis in the medial cortex of the tropical lizard Tropidurus hispidus.
2004
Young, adult and presumed old specimens of the tropical lizard Tropidurus hispidus, living in an almost steady warm habitat, have been the subjects of a 5-bromodeoxiuridine immunocytochemical study to label proliferating brain cells. All animals showed abundant 5-bromodeoxiuridine-labeled nuclei in the ependyma of their telencephalic lateral ventricles, with these being especially abundant in the medial cortex ependyma. Surprisingly, adult animals displayed higher numbers of labeled nuclei when compared with those of young specimens. In a second experiment, in order to check the evolution of ependymal-labeled nuclei, adult specimens were allowed 4 h or 2, 4, 7, 15 or 30 days of survival aft…
Early GABAergic circuitry in the cerebral cortex.
2013
In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual devel…
Dual effects of increased glycogen synthase kinase-3β activity on adult neurogenesis
2013
Adult neurogenesis, the generation of new neurons during the adulthood, is a process controlled by several kinases and phosphatases among which GSK3β exerts important functions. This protein is particularly abundant in the central nervous system, and its activity deregulation is believed to play a key role in chronic disorders such as Alzheimer's disease. Previously, we reported that in vivo overexpression of GSK3β (Tet/GSK3β mice) causes alterations in adult neurogenesis, leading to a depletion of the neurogenic niches. Here, we have further characterized those alterations, finding a delay in the switching-off of doublecortin marker as well as changes in the survival and death rates of imm…