Search results for "Neutron capture"

showing 10 items of 86 documents

Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157

2018

International audience; We have measured the |$\gamma$|-ray energy spectrum from the thermal neutron capture, |${}^{157}$|Gd|$(n,\gamma)$|⁠, on an enriched |$^{157}$|Gd target (Gd|$_{2}$|O|$_{3}$|⁠) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (⁠|$^{60}$|Co, |$^{137}$|Cs, and |$^{152}$|Eu) and the |$^{35}$|Cl(⁠|$n$|⁠,|$\gamma$|⁠) reaction were used to determine the spectrometer‘s detection efficiency for |$\gamma$| rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of …

PhotonPhysics - Instrumentation and DetectorsMonte Carlo methodGeneral Physics and Astronomy7. Clean energy01 natural sciencesnuclear reactionSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)H43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]n: fissionNuclear Experiment (nucl-ex)n: captureNuclear ExperimentNuclear ExperimentPhysicsdensityJ-PARC LabphotonGamma rayInstrumentation and Detectors (physics.ins-det)Atomic physicsnumerical calculations: Monte CarloSpallation Neutron SourceNeutron captureAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumchemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermalF20 Instrumentation and technique0103 physical sciencesModels of nuclear reactions[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutron capture gamma ray cascade Models of nuclear reactions Neutrinos from supernova remnant010306 general physicsD21 Models of nuclear reactionsgamma ray cascadeSpectrometer010308 nuclear & particles physicsnucleusNeutron radiationH20 Instrumentation for underground experiments* Automatic Keywords *germaniumF22 Neutrinos from supernova remnant and other astronomical objectschemistryn: beamNeutrinos from supernova remnantefficiencygamma rayspectrometerC43 Underground experimentsgadolinium
researchProduct

The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber.

2014

Abstract The mixed neutron–photon beam of FiR 1 reactor is used for boron–neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple b…

PhotonQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsMonte Carlo methodAnalytical chemistryBoron Neutron Capture TherapySensitivity and SpecificityOpticsNuclear ReactorsDosimetryPenelopeIonization ChamberDosimetryComputer SimulationPhoton beamRadiometryMonte CarloPhysicsPhotonsRadiationModels Statisticalbusiness.industryAirRadiotherapy Planning Computer-AssistedReproducibility of ResultsEquipment DesignNeutron radiationEquipment Failure AnalysisIonization chamberBNCTPhysics::Accelerator PhysicsComputer-Aided DesignDose ratebusinessMCNP5Beam (structure)Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
researchProduct

Gamma Ray Spectra from Thermal Neutron Capture on Gadolinium-155 and Natural Gadolinium

2019

Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{\rm 155}$Gd and $^{\rm 157}$Gd. We measured the $\gamma$-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched $^{\rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{\rm 155}$Gd(n, $\gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{\rm 157}$Gd(n, $\gamma$) reaction, and its performance confirmed with the independent data from the $^{\r…

Physics - Instrumentation and DetectorsGadoliniumMonte Carlo methodAnalytical chemistryenergy spectrumGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermal7. Clean energy01 natural sciencesSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)F20 Instrumentation and technique0103 physical sciencesH43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)n: capture010306 general physicsNuclear ExperimentMonte CarloPhysicsD21 Models of nuclear reactionsIsotopeSpectrometer010308 nuclear & particles physicsJ-PARC LabGamma rayInstrumentation and Detectors (physics.ins-det)Gadolinium neutron capture gamma ray cascadeNeutron temperature3. Good healthparticle: interactionH20 Instrumentation for underground experimentsgermaniumF22 Neutrinos from supernova remnant and other astronomical objectsC42 Reactor experimentschemistrygamma rayC43 Underground experimentsspectrometergadoliniumperformance
researchProduct

Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

2017

The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…

Physics010308 nuclear & particles physicsGamma rayNuclear dataScintillator7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physicsNeutron captureNuclear reactor core0103 physical sciencesNeutron cross sectionNeutron010306 general physicsPhysical Review C
researchProduct

Characterization and First Test of an i-TED Prototype at CERN n_TOF

2018

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaDetectorGamma rayi-TED n_TOF characterizationNeutron radiationRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesNeutron capture0302 clinical medicineNeutron cross sectionNeutronGamma spectroscopy[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]iTED n_TOF neutron
researchProduct

Primordial Heavy Element Production

1995

A number of possible mechanisms have been suggested to generate density in-homogeneities in the early Universe which could survive until the onset of primordial nucleosynthesis (Malaney and Mathews 1993). In this work we are not concerned with how the inhomogeneities were generated but we want to focus on the effect of such inhomogeneities on primordial nucleosynthesis. One of the proposed signatures of inhomogeneity, the synthesis of very heavy elements by neutron capture, was analyzed for varying baryon to photon ratios n and length scales L. A detailed discussion is published in (Rauscher et al. 1994b). Preliminary results can be found in (Thielemann et al. 1991; Rauscher et al. 1994a).

PhysicsBaryonNeutron capturePhotonBig Bang nucleosynthesismedia_common.quotation_subjectAstrophysicsHeavy elementUniversemedia_common
researchProduct

Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities

2019

The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…

PhysicsLarge Hadron ColliderIsotope010308 nuclear & particles physicsFissionPhysicsQC1-999n_TOF 242Pu neutron capture neutron time of flight[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyResonance (particle physics)Nuclear physicsStack (abstract data type)0103 physical sciencesNeutronResearch reactorNuclear Physics - ExperimentNeutron activation analysis010306 general physics
researchProduct

Irradiation facility at the TRIGA Mainz for treatment of liver metastases

2009

Abstract The TRIGA Mark II reactor at the University of Mainz provides ideal conditions for duplicating BNCT treatment as performed in Pavia, Italy, in 2001 and 2003 [Pinelli, T., Zonta, A., Altieri, S., Barni, S., Braghieri, A., Pedroni, P., Bruschi, P., Chiari, P., Ferrari, C., Fossati, F., Nano, R., Ngnitejeu Tata, S., Prati, U., Ricevuti, G., Roveda, L., Zonta, C., 2002. TAOrMINA: from the first idea to the application to the human liver. In: Sauerwein et al. (Eds.), Research and Development in Neutron Capture Therapy. Proceedings of the 10th International Congress on Neutron Capture Therapy, Monduzzi editore, Bologna, pp. 1065–1072]. In order to determine the optimal parameters for the…

PhysicsModels StatisticalRadiationHuman liverbusiness.industryRadiotherapy Planning Computer-AssistedLiver NeoplasmsBoron Neutron Capture TherapyIn Vitro TechniquesTRIGAFast NeutronsNuclear ReactorsGermanyInternational congressHumansNuclear medicinebusinessMonte Carlo MethodApplied Radiation and Isotopes
researchProduct

On the use of stacks of fission-like targets for neutron capture experiments

2019

The measurement of neutron induced reactions on unstable isotopes is of interest in many fields, from nuclear energy to astrophysics or applications; in particular transuranic isotopes are essential for the development of innovative nuclear reactors and for the management of the radioactive waste. In such measurements, the quality of the associated radioactive target is crucial for the success of the experiment, but in many cases the geometry, amount of mass and encapsulation of the target are not optimal, leading to limited results. In this work we propose to produce high quality radioactive targets for capture as a stack of thin targets using the techniques usually employed for fission me…

PhysicsNeutron captureNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsFissionNuclear engineeringTime-of-flightRadioactive waste01 natural sciences7. Clean energyNeutron temperatureRadioactive targetTime of flightNeutron captureStack (abstract data type)Electrodeposition0103 physical sciencesNeutronn_TOF010306 general physicsNuclear ExperimentInstrumentation
researchProduct

Study of reliability of TLDs for the photon dose mapping in reactor neutron fields for BNCT

2008

Abstract Photon dose measurements in radiation fields having the proper characteristics for boron neutron capture therapy (BNCT) present several troubles. The thermal neutron flux is very high and produces a significant contribution to the response of most dosimeters. The consistency of photon dose measurements with CaF 2 :Tm and LiF:Mg, Ti thermoluminescent dosimeters has been studied. A method is described for obtaining the gamma dose with TLD-700 and some results are presented to test its reliability.

PhysicsNeutron captureRadiationDosimeterRadiochemistryGamma rayDose profileNeutronThermoluminescent dosimeterRadiationInstrumentationNeutron temperatureRadiation Measurements
researchProduct