Search results for "Neutrons"
showing 10 items of 152 documents
A Targeted Search for Point Sources of EeV Neutrons
2014
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …
7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN
2017
One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…
The n_TOF facility: Neutron beams for challenging future measurements at CERN
2016
The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…
Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons
2009
Abstract Monte Carlo numerical calculations of the response of alanine and ammonium tartrate ESR (electron spin resonance) dosimeters exposed to neutron fields with different energy spectra are reported. Results have been obtained for various gadolinium concentrations inside the dosimeters. Furthermore, in order to simulate the in-phantom response we have carried out calculations by varying the depth of the dosimeter. We have found that a large enhancement is obtained for thermal neutrons, because of the very high capture cross section of gadolinium to thermal neutrons. A good enhancement was obtained for epithermal neutrons, whereas the sensitivity improvement in the case of fast neutron i…
Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging.
2019
We probe the current-induced magnetic switching of insulating antiferromagnet/heavy metals systems, by electrical spin Hall magnetoresistance measurements and direct imaging, identifying a reversal occurring by domain wall (DW) motion. We observe switching of more than one third of the antiferromagnetic domains by the application of current pulses. Our data reveal two different magnetic switching mechanisms leading together to an efficient switching, namely the spin-current induced effective magnetic anisotropy variation and the action of the spin torque on the DWs.
A low-pass velocity filter for ultracold neutrons
2012
Abstract We have built a device to filter ultracold neutrons with axial velocities v n ≤ 8.0 m / s from faster neutrons. The apparatus has been successfully tested at the Institut Laue-Langevin in Grenoble and is used in specific experiments, e.g., the measurement of ultracold neutron transmission through various types of neutron guides.
Small-angle neutron scattering reveals an oxygen-dependent conformational change of the immunogen keyhole limpet hemocyanin type 1 (KLH1).
2001
The respiratory protein of the keyhole limpet, Megathura crenulata, the hemocyanin (KLH), commonly used as an immunogen, binds oxygen cooperatively, which implies the existence of different conformations. For the first time, two different conformations of KLH1 were detected upon oxygenation, a deoxy and an oxy state, using small-angle neutron scattering. Rearrangements in the quaternary structure of KLH1 were predicted from the different radii of gyration and the shifts of the minima and maxima in the scattering curves. Upon oxygenation, KLH1 becomes smaller and more compact. Model reconstruction of KLH1 indicates a hollow cylinder with two rings located close to both ends, which move sligh…
Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls
2012
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…
GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
2018
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…
GW170817: Measurements of Neutron Star Radii and Equation of State
2018
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…