Search results for "Neutrons"

showing 10 items of 152 documents

Comparison of neutron and X-ray scattering of dilute myoglobin solutions.

1975

Experimental results obtained by neutron scattering of dilute solutions of myoglobin are compared with those obtained by X-ray scattering. X-ray scattering remains the more powerful technique at wider angles above 0.3 A−1, where neutron experiments are less accurate because of low coherent scattering probability and high incoherent background. Neutron scattering is preferable at momentum transfers below 0.2 A−1; the conditions for applying the contrast variation method for the evaluation of the three basic scattering functions, which are due to shape and internal structure, equation (3), are ideally fulfilled in this region. Furthermore, neutrons allow observation of the hydrogen-deuterium …

MaleProtein ConformationAstrophysics::High Energy Astrophysical PhenomenaNeutron scatteringInelastic scatteringOpticsStructural BiologyMethodsAnimalsScattering RadiationMolecular BiologyPhysicsNeutronsQuasielastic scatteringScatteringbusiness.industryMyoglobinX-RaysWhalesDeuteriumSmall-angle neutron scatteringComputational physicsQuasielastic neutron scatteringScattering theoryBiological small-angle scatteringbusinessMathematicsJournal of molecular biology
researchProduct

High-accuracy mass measurements on neutron deficient neon isotopes

2005

International audience; The atomic masses of the short-lived nuclides 17Ne and 19Ne have been measured with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The obtained mass excess for both nuclides deviates significantly from the literature value, in the case of 17Ne about 40 keV. The mass value of 17Ne can be applied for a test of the isobaric multiplet mass equation with respect to an isospin T = 3/2 quartet. In addition, both masses can contribute to the data analysis of collinear laser-spectroscopy experiments where mean-square nuclear-charge radii are determined.

Mass excessNuclear Theorychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyISOLTRAPNuclear physicsNeonnuclei with mass number 6 to 190103 physical sciencesNuclideneon010306 general physicsNuclear ExperimentPhysicsmass spectrometers010308 nuclear & particles physicsneutronsAtomic massMass formulaMass21.10.Dr 27.20.+n 29.30.-hIsotopes of neonchemistrynuclear massAtomic physics
researchProduct

Low-temperature studies of Cr 3+ ions in natural and neutron-irradiated g-Al spinel

2020

This study was supported by a grant from Latvian Council of Science (agreement No. LZP-2018/1-0214).

Materials sciencePhotoluminescencePhysics and Astronomy (miscellaneous)Analytical chemistryGeneral Physics and Astronomychemistry.chemical_elementengineering.material01 natural sciencesIonlaw.inventionlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Neutronfast neutronsIrradiation010306 general physicsElectron paramagnetic resonance010302 applied physicsMagnesiumSpinelNeutron temperaturechemistryMgAl2O4photoluminescence spectraengineeringLow Temperature Physics
researchProduct

RADICAL DISTRIBUTIONS IN AMMONIUM TARTRATE SINGLE CRYSTALS EXPOSED TO PHOTON AND NEUTRON BEAMS

2014

The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these …

Materials sciencePhotonFree RadicalsTrack nanodosimetryLinear energy transferElectronsRadiationMolecular physicsIonizing radiationMagneticsRadiation IonizingRadiology Nuclear Medicine and imagingHeavy IonsIrradiationCobalt RadioisotopesRadiometryTartratesNeutronsRange (particle radiation)PhotonsRadiationRadiological and Ultrasound TechnologyRadiation induced radicals ammonium tartrate pulsed electron paramagnetic resonanceelectron spin resonancePublic Health Environmental and Occupational HealthElectron Spin Resonance SpectroscopyGeneral MedicineCharged particleNeutron temperatureSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CarbonGamma RaysTrack nanodosimetry; electron spin resonanceCrystallization
researchProduct

Study of the glow curves of TLD exposed to thermal neutrons.

2007

The glow curves of thermoluminescent dosimeters (TLD600, TLD700 and MCP), exposed to a mixed field of thermal neutrons and gamma photons are analysed. The fluence values of thermal neutrons used, comparable with those used in radiotherapy, allow one to define the reliability of the TLDs, in particular the most sensitive MCP, in this radiation field and to get information on the dose absorbed values. The glow curves obtained have been deconvoluted using general order kinetics and the observed differences for the different LET components have been analysed. In particular, the ratio of the n(0) parameter of two different peaks seems to allow to discriminate the different contributions of neutr…

Materials sciencePhotonHot TemperatureThermoluminescenceAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical PhysicsRadiation DosageThermoluminescenceFluenceSensitivity and SpecificityRadiation ProtectionDosimetryRadiology Nuclear Medicine and imagingNeutronComputer SimulationNeutron beamNeutronsRadiationDosimeterRadiological and Ultrasound Technologybusiness.industryPublic Health Environmental and Occupational HealthReproducibility of ResultsGeneral MedicineEquipment DesignModels TheoreticalSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron temperatureEquipment Failure AnalysisComputer-Aided DesignThermoluminescent DosimetryThermoluminescent dosimeterAtomic physicsNuclear medicinebusinessBeam (structure)Radiation protection dosimetry
researchProduct

Positron lifetime measurements on neutron‐irradiated InP crystals

1996

Neutron‐irradiated InP single crystals have been investigated by positron‐lifetime measurements. The samples were irradiated with thermal neutrons at different fluences yielding concentrations for Sn‐transmuted atoms between 2×1015 and 2×1018 cm−3. The lifetime spectra have been analyzed into one exponential decay component. The mean lifetimes show a monotonous increase with the irradiation dose from 246 to 282 ps. The increase in the lifetime has been associated to a defect containing an Indium vacancy. Thermal annealing at 550 °C reduces the lifetime until values closed to those obtained for the as‐grown and conventionally doped InP crystals. navarrof@evalvx.ific.uv.es ; Jose.Ferrero@uv.es

Materials sciencePhysics::Instrumentation and DetectorsPhysics::Medical PhysicsAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementDefect StructureMonocrystalsSpectral lineCondensed Matter::Materials Science:FÍSICA [UNESCO]Vacancy defectNeutronIrradiationIndium Phosphides ; Radiation Effects ; Thermal Neutrons ; Monocrystals ; Positron Probes ; Lifetime ; Defect StructureExponential decayPositron ProbesDopingRadiochemistryUNESCO::FÍSICANeutron temperatureRadiation EffectschemistryIndium PhosphidesThermal NeutronsLifetimeIndiumJournal of Applied Physics
researchProduct

Neutron ESR dosimetry through ammonium tartrate with low Gd content.

2014

This paper continues analyses on organic compounds for application in neutron dosimetry performed through electron spin resonance (ESR). Here, the authors present the results obtained by ESR measurements of a blend of ammonium tartrate dosemeters and gadolinium oxide (5 % by weight). The choice of low amount of Gd is due to the need of improving neutron sensitivity while not significantly influencing tissue equivalence. A study of the effect of gadolinium presence on tissue equivalence was carried out. The experiments show that the neutron sensitivity is enhanced by more than an order of magnitude even with this small additive content. Monte Carlo simulations on the increment of energy rele…

Materials scienceSettore ING-IND/20 - Misure E Strumentazione NucleariGadoliniumMonte Carlo methodAnalytical chemistrychemistry.chemical_elementGadoliniumRadiationRadiation Dosagelaw.inventionlawDosimetryRadiology Nuclear Medicine and imagingNeutronElectron paramagnetic resonanceRadiometryTartratesNeutronsRadiationRadiological and Ultrasound Technologyammonium tartratebusiness.industryPublic Health Environmental and Occupational HealthElectron Spin Resonance SpectroscopyResonanceGeneral MedicineESR Dosimetryneutron dosimetrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistryMeasuring instrumentNuclear medicinebusinessMonte Carlo MethodRadiation protection dosimetry
researchProduct

Identification of markers that can be recognised using spectroscopic sensors and which reflect key stages in the cooking of meat and fish

2016

One of the purposes of the Opticook project is to install spectroscopic sensors in ovens, so equipping them with non intrusive tools allowing following cooking process of meat and fish. The hypothesis on which sensors were developed was: are muscular proteins proper probes to discriminate among several cooking degrees? Thus, at the beginning of the project several tools were used to characterise effect of several cooking degrees on macroscopic properties (texture and colour) of beef, chicken and cod fillet samples. Following, calorimetry and spectroscopic techniques were used to study transformations at molecular scale. In particular, visible spectroscopy followed denaturation of haemprotei…

MeatPurified myosinMyosine purifiéeCoupled techniquesViande[SDV.IDA] Life Sciences [q-bio]/Food engineeringImagerie de neutronsFluorescenceLow field-NMRNeutron imagingCouplageVisibleCuisson[SDV.IDA]Life Sciences [q-bio]/Food engineeringCookingInfraredInfrarougeRMN-bas champ
researchProduct

Glutamate 270 plays an essential role in K+-activation and domain closure ofThermus thermophilusisopropylmalate dehydrogenase

2014

The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K(+) compared to the wild-type enzyme. A 3-4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K(+). SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K(+) into close proximity of the nicotinamide ring of NAD(+) and the electron-withdrawing effect…

Models MolecularStereochemistry030303 biophysicsMutantBiophysicsGlutamic AcidLarge scale facilities for research with photons neutrons and ionsSmall angle X-ray scatteringDehydrogenaseBiochemistry3-Isopropylmalate Dehydrogenase03 medical and health scienceschemistry.chemical_compoundIsopropylmalate dehydrogenaseFluorescence resonance energy transferStructural BiologyOxidoreductaseGeneticsMolecular BiologyX-ray crystallography030304 developmental biologychemistry.chemical_classificationSite-directed mutagenesis0303 health sciencesNicotinamidebiologyThermus thermophilusActivation by K+Cell BiologyThermus thermophilusbiology.organism_classificationProtein Structure TertiaryMOPSEnzyme ActivationKineticsCrystallographyEnzymechemistryMutationNAD+ kinaseFEBS Letters
researchProduct

Dose determination using alanine detectors in a mixed neutron and gamma field for boron neutron capture therapy of liver malignancies

2011

IntroductionBoron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and may be suitable for measurements in mixed neutron and gamma fields.Materials and MethodsTwo experiments have been carried out in the thermal column of the TRIGA Mark II reactor at the University of Mainz. Alanine dosimeters have been irradiated in a phantom and in liver tissue.ResultsFor the interpretation and prediction of the dose for each pellet, beside the results of the measurements, calculations …

Monte Carlo methodBoron Neutron Capture TherapyImaging phantomTRIGAIonizing radiationRadiation MonitoringHumansMedicineDosimetryRadiology Nuclear Medicine and imagingNeutronRadiometryNeutronsAlanineDosimeterPhantoms Imagingbusiness.industryLiver NeoplasmsRadiochemistryDose-Response Relationship RadiationHematologyGeneral MedicineNeutron captureLiverOncologyGamma RaysbusinessNuclear medicineMonte Carlo MethodActa Oncologica
researchProduct