Search results for "Nicotiana tabacum"

showing 10 items of 55 documents

AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase

2011

International audience; The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapi…

0106 biological sciencesMAPK/ERK pathwayTime FactorsMAP Kinase Signaling SystemPhysiologyNicotiana tabacumLotus japonicusPlant ScienceComplex MixturesBiology01 natural sciences03 medical and health sciencesPlant CellsTobaccoBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosisNicotiana plumbaginifoliaPlant Proteins030304 developmental biologyMitogen-Activated Protein Kinase Kinasesarbuscular-mycorrhizal fungi0303 health sciencesdiffusible factorcalciumKinasefungiArbuscular-mycorrhizal fungi; Signaling; Diffusible factor; MAPK; Calciumfood and beveragesSpores FungalPlant cellbiology.organism_classificationMAPKsym pathwayCell biologyCytosolCell cultureLotus[SDE.BE]Environmental Sciences/Biodiversity and Ecologysignaling010606 plant biology & botanyPlant Physiology and Biochemistry
researchProduct

Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane

1995

Abstract Binding of cryptogein, a proteinaceous elicitor, was studied on tobacco plasma membrane. The binding of the [125I]cryptogein was saturable, reversible and specific with an apparent Kd of 2 nM. A single class of cryptogein binding sites was found with a sharp optimum pH for binding at about pH 7.0. The high-affinity correlates with cryptogein concentrations required for biological activity in vivo.

0106 biological sciencesNicotiana tabacumBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesStructural BiologyIn vivoTobaccoGeneticsBinding siteReceptor[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesBinding SitesbiologyNicotiana tabacumChemistryAlgal ProteinsCell MembraneElicitinBiological activityCell BiologyElicitorbiology.organism_classification3. Good healthElicitorKineticsPlants ToxicMembraneBiochemistryCryptogeinPlasma membraneReceptor010606 plant biology & botany
researchProduct

Comparison of the effects of cryptogein and oligogalacturonides on tabacco cells and evidence of different forms of desensitization induced by these …

1998

Abstract The effects of cryptogein and oligogalacturonides (OGs) were compared on tobacco cells by measuring calcium influx and calcium-dependent responses including extracellular alkalinization and H 2 O 2 production. The main difference is the higher calcium influx and the sustained H 2 O 2 production induced by cryptogein compared to OGs. Amplitude and duration of calcium signalling triggered by cryptogein or OGs may explain the necrotic effect of cryptogein, and the absence of necrosis in tobacco plants treated with OGs. We used induction of alkalinization and H 2 O 2 production to investigate cryptogein effects after a first treatment with cryptogein or OGs, and reciprocally. Results s…

0106 biological sciencesNicotiana tabacumchemistry.chemical_elementStimulationPlant ScienceCalciumBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsBotanyGeneticsExtracellularComputingMilieux_MISCELLANEOUS030304 developmental biologyCalcium signaling0303 health sciencesGeneral Medicinebiology.organism_classificationElicitorCell biologyRespiratory burstchemistrySignal transductionAgronomy and Crop Science010606 plant biology & botany
researchProduct

Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity

2010

Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent pr…

0106 biological sciencesOsmosisSalinityNicotiana tabacumMolecular Sequence DataNitric Oxide01 natural sciencesBiochemistry03 medical and health sciencesEnzyme activatorStress PhysiologicalTobaccoASK1[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceProtein kinase AMolecular BiologyGlyceraldehyde 3-phosphate dehydrogenaseCells Cultured030304 developmental biologyPlant Proteins0303 health sciencesbiologyKinaseGlyceraldehyde-3-Phosphate DehydrogenasesLife SciencesCell BiologyS-Nitrosylationbiology.organism_classification3. Good healthBiochemistrybiology.proteinPhosphorylationProtein Kinases010606 plant biology & botany
researchProduct

Comparison of binding properties and early biological effects of elicitins in tobacco cells

1998

Abstract Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another fo…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesCell surface receptor[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsExtracellularBinding siteComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyBinding proteinElicitinTECHNIQUE DES TRACEURSbiology.organism_classificationElicitorBiochemistryCULTURE DE CELLULESignal transduction010606 plant biology & botanyResearch Article
researchProduct

Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco

1996

Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGene expressionBotanyGeneticsGeneComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyINDUCTIONfungiElicitinPhytophthora nicotianaebiology.organism_classificationCell biologyPhytophthoraRESISTANCESystemic acquired resistanceSolanaceaeResearch Article010606 plant biology & botanyPlant Physiology
researchProduct

Involvement of Free Calcium in Action of Cryptogein, a Proteinaceous Elicitor of Hypersensitive Reaction in Tobacco Cells

1995

Treatment of suspension-cultured tobacco (Nicotiana tabacum var Xanthi) cells with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, induced a great stimulation of Ca2+ influx within the first minutes. Ca2+ influx is essential for the initiation of cryptogein-induced responses, since ethyleneglycol-bis([beta]-amino-ethyl ether)-N,N[prime]-tetraacetic acid or La3+, which block Ca2+ entrance, suppress cryptogein-induced responses such as extracellular alkalinization, active oxygen species, and phytoalexin production. Moreover, once initiated, these responses require sustained Ca2+ influx within the 1st h. A Ca2+ ionophore (A23187) was able to trigger an extracellular alkaliniz…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsExtracellularmedicineStaurosporineProtein phosphorylationComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyPhytophthora cryptogeaPhytoalexinbiology.organism_classificationElicitorCell biologyBiochemistrychemistrySignal transductionResearch Article010606 plant biology & botanymedicine.drugPlant Physiology
researchProduct

Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein

1994

Changes in plasmalemma ion fluxes were observed when tobacco (Nicotiana tabacum) cells were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. A strong alkalization of the culture medium, accompanied by a leakage of potassium, was induced within a few minutes of treatment. These effects reached a maximum after 30 to 40 min and lasted for several hours. This treatment also resulted in a rapid, but transient, production of activated oxygen species. All these physiological responses were fully sensitive to staurosporine, a known protein kinase inhibitor. Furthermore, a study of protein phosphorylation showed that cryptogein induced a staurosporine-sensitive phosphor…

0106 biological sciencesPhysiologymedicine.drug_classNicotiana tabacumPlant Sciencemacromolecular substances01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsmedicineStaurosporineProtein phosphorylationComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyPhytophthora cryptogeafood and beveragesCULTURE DE TISSUSProtein kinase inhibitorbiology.organism_classificationElicitorBiochemistryCell culturePhosphorylation010606 plant biology & botanymedicine.drugResearch Article
researchProduct

The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells

2002

Summary A cDNA encoding a protein, NtrbohD, located on the plasma membrane and homologue to the flavocytochrome of the neutrophil NADPH oxidase, was cloned in tobacco. The corresponding mRNA was accumulated when tobacco leaves and cells were treated with the fungal elicitor cryptogein. After elicitation with cryptogein, tobacco cells transformed with antisense constructs of NtrbohD showed the same extracellular alkalinization as the control, but no longer produced active oxygen species (AOS). This work represents the first demonstration of the function of a homologue of gp91–phox in AOS production in elicited tobacco cells.

0106 biological sciencesTime FactorsNicotiana tabacumMolecular Sequence DataPlant ScienceBiologyGenes Plant01 natural sciencesFungal Proteins[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsComplementary DNATobaccoGene expressionGeneticsExtracellularAOSAmino Acid SequenceRNA MessengerCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesOxidase testNADPH oxidaseGene Expression ProfilingAlgal ProteinsCell MembraneHydrogen PeroxideCell BiologyHydrogen-Ion ConcentrationPlants Genetically Modifiedbiology.organism_classification3. Good healthElicitorCell biologyPlant LeavesProtein TransportBiochemistryCell culturebiology.proteinOxidoreductasesReactive Oxygen Species010606 plant biology & botany
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct