Search results for "Nonlocal"

showing 10 items of 95 documents

The promise of spintronics for unconventional computing

2021

Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/o…

Computer scienceFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology01 natural sciencesQuantum nonlocalityAffordable and Clean EnergyBlueprintMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencescond-mat.mes-hallElectronic engineeringHardware_ARITHMETICANDLOGICSTRUCTURESStandby powerApplied Physics010302 applied physicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringReservoir computingPhysics - Applied PhysicsMaterials EngineeringPhysik (inkl. Astronomie)Dissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCMOS integrated circuits; Computation theory; Energy dissipation; Green computing; Spin fluctuations; Spintronics; Tunnel junctionsCMOS0210 nano-technologyUnconventional computingphysics.app-ph
researchProduct

Wave propagation in 1D elastic solids in presence of long-range central interactions

2011

Abstract In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kroner–Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is …

Body forceAcoustics and UltrasonicsCONTINUAWave propagationMechanical EngineeringWeak solutionMODELSElastic energyGRADIENT ELASTICITYWeak formulationElasticity (physics)Condensed Matter PhysicsWave equationMEDIANONLOCAL ELASTICITYClassical mechanicsMechanics of MaterialsBoundary value problemSettore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Sound and Vibration
researchProduct

Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms

2006

The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.

PhysicsSpontaneous decayQuantum PhysicsField (physics)Dynamical dispersion forceFOS: Physical sciencesThree-body forcesCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCasimir effectQuantum nonlocalityQuantum mechanicsExcited statePhysics::Atomic and Molecular ClustersCausality and nonlocalityPhysics::Atomic PhysicsObservabilityQuantum Physics (quant-ph)Ground state
researchProduct

Constrained differential inclusions with nonlocal initial conditions

2017

International audience; We show existence for the perturbed sweeping process with nonlocal initial conditions under very general hypotheses. Periodic, anti-periodic, mean value and multipoints conditions are included in this study. We give abstract results for differential inclusions with nonlocal initial conditions through bounding functions and tangential conditions. Some applications to differential complementarity systems and to vector hysteresis are given.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]MSC: 34A60 49J52 34G25 49J53 34B10Periodic solutionsNonlocal Cauchy problemDifferential inclusions[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Sweeping processesNormal coneBounding functions
researchProduct

Interfacial energy effects within the framework of strain gradient plasticity

2009

AbstractIn the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer…

Materials scienceSurface tensionApplied MathematicsMechanical EngineeringConstitutive equationInterfacesPlasticityCondensed Matter PhysicsGradient plasticitySurface energySurface tensionNonlocal continuum thermodynamicsBoundary layerClassical mechanicsMaterials Science(all)Surface energyMechanics of MaterialsModelling and SimulationModeling and SimulationRock mass plasticityDissipative systemGeneral Materials ScienceBoundary value problemInternational Journal of Solids and Structures
researchProduct

A thermodynamically consistent nonlocal formulation for damaging materials

2002

A thermodynamically consistent nonlocal formulation for damaging materials is presented. The second principle of thermodynamics is enforced in a nonlocal form over the volume where the dissipative mechanism takes place. The nonlocal forces thermodynamically conjugated are obtained consistently from the free energy. The paper indeed extends to elastic damaging materials a formulation originally proposed by Polizzotto et al. for nonlocal plasticity. Constitutive and computational aspects of the model are discussed. The damage consistency conditions turn out to be formulated as an integral complementarity problem and, consequently, after discretization, as a linear complementarity problem. A n…

Nonlocal modelsDiscretizationMechanical EngineeringConstitutive equationGeneral Physics and AstronomyPlasticityComplementarity problemLinear complementarity problemFinite element methodComplementarity problem; Damage; Nonlocal models;Classical mechanicsDamageMechanics of MaterialsConsistency (statistics)Complementarity theoryDissipative systemGeneral Materials ScienceSettore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct

Heat transfer in conducting and radiating bodies

1997

Abstract We introduce briefly some nonlocal models for heat transfer in conducting and radiating media. The goal is to give an idea of the general mathematical structure and related existence results for such models.

Physicssymbols.namesakeClassical mechanicsStefan–Boltzmann lawThermal radiationNonlocal problemsApplied MathematicsHeat transfersymbolsStefan-Boltzmann lawStatistical physicsMathematical structureHeat radiationApplied Mathematics Letters
researchProduct

Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics

2019

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can b…

LetterChemistry(all)geometrical controlFOS: Physical sciencesBioengineeringRELAXATIONApplied Physics (physics.app-ph)02 engineering and technologySpin current7. Clean energyelectrical and spin resistanceMaterials Science(all)National Graphene InstituteOn demandMesoscale and Nanoscale Physics (cond-mat.mes-hall)LOGICGeneral Materials ScienceElectronicsPhysicsspintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsbusiness.industryMechanical EngineeringMEMORYnon-local spin valvesPhysics - Applied PhysicsGeneral ChemistrySpintronicsDissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsTRANSPORTROOM-TEMPERATURENanoelectronicsnonlocal spin valvesMETALResearchInstitutes_Networks_Beacons/national_graphene_institutecurved nanoarchitectures; electrical and spin resistance; geometrical control; nonlocal spin valves; SpintronicsOptoelectronicscurved nanoarchitecturesINJECTION0210 nano-technologybusinessEfficient energy useNano Letters
researchProduct

Erratum to: Letter to the Editor [Engineering Fracture Mechanics 2003 (70) 1219-21]

2004

Erratum and Corrections

EngineeringLetter to the editorMechanics of Materialsbusiness.industryMechanical EngineeringNonlocal PlasticityMechanical engineeringGeneral Materials ScienceFracture mechanicsbusinessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

A thermodynamic approach to nonlocal plasticity and related variational principles

1999

Elastic-plastic rate-independent materials with isotropic hardening/softening of nonlocal nature are considered in the context of small displacements and strains. A suitable thermodynamic framework is envisaged as a basis of a nonlocal associative plasticity theory in which the plastic yielding laws comply with a (nonlocal) maximum intrinsic dissipation theorem. Additionally, the rate response problem for a (continuous) set of (macroscopic) material particles, subjected to a given total strain rate field, is discussed and shown to be characterized by a minimum principle in terms of plastic coefficient. This coefficient and the relevant continuum tangent stiffness matrix are shown to admit, …

Mechanical EngineeringMathematical analysisThermodynamic consistent frameworkStiffnessNonlocal Maximum dissipation theoremNonlocal PlasticityDissipationPlasticityCondensed Matter PhysicsClassical mechanicsDiffusion processMechanics of MaterialsVariational principlemedicineTangent stiffness matrixUniquenessBoundary value problemmedicine.symptomSettore ICAR/08 - Scienza Delle CostruzioniNonlocal associative plasticityMathematics
researchProduct