Search results for "OLFACTORY EPITHELIUM"

showing 10 items of 28 documents

A binary genetic approach to characterize TRPM5 cells in mice

2015

International audience; Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a tau GFP transgene. To confirm faithful coexpression of tau GFP and TRPM5 we gene…

MalePhysiologytaste papillaegene targetingBehavioral NeuroscienceMice0302 clinical medicineTaste receptor[SDV.IDA]Life Sciences [q-bio]/Food engineeringGene Knock-In TechniquesIn Situ Hybridization Fluorescence0303 health sciencestaste budsiresGene targetingrosa26ImmunohistochemistrySensory SystemsCell biologyknock inmedicine.anatomical_structuretrpm5taste receptor cellsFemaleGenotypeTransgeneCre recombinaseTRPM Cation ChannelsMice TransgenicBiologyAntibodiestgfpseptal organ of masera03 medical and health sciencesOlfactory MucosaTonguemicrovillar cellsPhysiology (medical)Gene knockinmedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringTRPM5cre recombinaseAlleles030304 developmental biologyPalateMice Inbred C57BLvomeronasal organolfactory epitheliumgastrointestinal tractHomologous recombinationOlfactory epithelium030217 neurology & neurosurgery
researchProduct

Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium.

2011

International audience; Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological p…

Male[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Multidrug Resistance-Associated Proteinsp glycoproteinATP-binding cassette transporterMESH : HepatocytesReceptors OdorantMESH : P-GlycoproteinMESH: HepatocytesMESH : Lymphatic Vessels0302 clinical medicineMESH : Protein Transportugt2a1MESH: SmellMESH: Receptors OdorantMESH: AnimalsReceptorxenobiotic metabolizingmucosa0303 health sciencesMESH : Gene Expression RegulationMESH : RatsGeneral NeuroscienceMESH : OdorsMESH: Gene Expression RegulationSmellProtein Transportmedicine.anatomical_structureBiochemistryLivertransporterbarrierEffluxMultidrug Resistance-Associated ProteinsMESH: Multidrug Resistance-Associated ProteinsMESH: XenobioticsMESH: Protein TransportMESH: P-GlycoproteinMESH: RatsMESH: Lymphatic VesselsMESH : Maleodorant clearancebrainMESH : XenobioticsxenobioticBiologysystemMESH : Rats WistarOlfactory Receptor NeuronsXenobiotics03 medical and health sciencesbulbOlfactory Mucosamultidrug resistanceMESH : Receptors OdorantmedicineAnimalsATP Binding Cassette Transporter Subfamily B Member 1Rats WistardetoxificationMESH: Olfactory Mucosa030304 developmental biologyLymphatic VesselsMESH : Olfactory MucosaMESH: OdorsMESH : LiverTransporterMESH: Rats WistarMESH: Olfactory Receptor NeuronsEpitheliumMESH: MaleOlfactory bulbRatsenzymeGene Expression RegulationOdorantsHepatocytesMESH : SmellMESH : Olfactory Receptor NeuronsMESH : Animalsolfactory epitheliumOlfactory epitheliumperireceptor event[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryDrug metabolismMESH: Liver
researchProduct

Activity and expression of drug metabolizing enzymes in olfactory mucosa of rats treated by hepatic inducers

2008

International audience; Several drug-metabolizing enzymes (DME), such as cytochrome P450- dependent monooxygenases (CYP) and transferases have been characterized in the olfactory epithelium. Some of them are preferentially expressed in this tissue, while others are similar to those present in the liver. The role of these enzymes remains unclear. Since the olfactory mucosa is in direct contact with the external environment, these enzymes can contribute to the detoxification of chemical compounds. In addition, these enzymes could be involved in the olfaction process, especially in the biotransformation of odorants. Indeed, the rapid inactivation and clearance of odorants is a prerequisite for…

OLFACTION PROCESSBIOTRANSFORMATION OF ODORANTS[CHIM.OTHE] Chemical Sciences/OtherOLFACTORY EPITHELIUMDRUG-METABOLIZING ENZYMESROLEOLFACTORY MUCOSA[CHIM.OTHE]Chemical Sciences/Other
researchProduct

Ontogenesis of the Extra-Bulbar Olfactory Pathway inXenopus laevis

2013

Although the development, anatomy, and physiology of the vertebrate olfactory system are fairly well understood, there is still no clear definition of the terminal nerve complex acknowledged by all. Among the most debated matters is whether or not the extrabulbar projections found in anamniotes should or should not be considered part of the terminal nerve complex. In this context, we investigated the early development of the extrabulbar pathway in Xenopus larvae from placodal differentiation to postmetamorphic stages. We showed that the extrabulbar fibers become visible around Stage 42 and are conserved throughout metamorphosis. We confirmed previous reports concerning their central project…

Olfactory system0303 health sciencesHistologyContext (language use)OlfactionAnatomyBiologyOlfactory bulb03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureOlfactory nerveAnamniotesmedicineTerminal nerveAnatomyOlfactory epithelium030217 neurology & neurosurgeryEcology Evolution Behavior and Systematics030304 developmental biologyBiotechnologyThe Anatomical Record
researchProduct

Acute effects of 1,1,1-trichloroethane on human olfactory functioning.

2004

Background Animal experiments indicate that 1,1,1-trichloroethane can cause degeneration of the olfactory epithelium. The effects of 1,1,1-trichloroethane on human odor perception still have not been investigated. The goal of this study was to learn more about acute effects of 1,1,1-trichloroethane. Methods Twelve healthy, nonsmoking students were exposed to 200 and 20 ppm (control) 1,1,1-trichloroethane in an exposure chamber for 4 hours according to a crossover design. Olfactory functioning was investigated with the Sniffin’ Sticks. The test includes the determination of the detection threshold for n-butanol and an odor identification test. Results After 1 hour of exposure to 200 ppm 1,1,…

Olfactory systemAdultMaleOlfactory Nerve040301 veterinary sciencesPhysiologyDegeneration (medical)030226 pharmacology & pharmacySensitivity and SpecificityStatistics Nonparametric0403 veterinary science03 medical and health sciencesOlfactory mucosachemistry.chemical_compoundOlfaction Disorders0302 clinical medicineOlfactory MucosaAdministration InhalationOlfactory thresholdMedicineHumansTrichloroethanesOlfactory memoryProbabilityCross-Over StudiesDose-Response Relationship Drugbusiness.industry04 agricultural and veterinary sciencesCrossover studymedicine.anatomical_structureOtorhinolaryngologychemistry111-TrichloroethaneCase-Control StudiesSensory ThresholdsPerceptionbusinessOlfactory epitheliumAmerican journal of rhinology
researchProduct

UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function.

2010

International audience; This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to th…

Olfactory systemMESH : RNA Messenger[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH: GlucuronosyltransferaseMESH : Blood-Brain BarrierMESH: Blood-Brain Barrierchemistry.chemical_compound0302 clinical medicineMESH: SmellPharmacology (medical)MESH: AnimalsMESH: Uridine DiphosphateMESH: Nerve Tissue ProteinsGlucuronosyltransferaseGeneral Pharmacology Toxicology and PharmaceuticsMESH : Olfactory BulbMESH : Nerve Tissue Proteins0303 health sciencesMESH: Gene Expression Regulation EnzymologicOlfactory PathwaysOlfactory BulbMESH : OdorsCell biologySmellmedicine.anatomical_structureBlood-Brain BarrierMESH: Olfactory Bulbmedicine.medical_specialtyCentral nervous systemNerve Tissue ProteinsIn situ hybridizationOlfactionBiologydigestive systemGene Expression Regulation EnzymologicOlfactory Receptor NeuronsUridine DiphosphateMESH : Gene Expression Regulation Enzymologic03 medical and health sciencesInternal medicinemedicineAnimalsRNA MessengerMESH : Uridine Diphosphate030304 developmental biologyMESH: RNA MessengerMESH: OdorsMESH : Olfactory PathwaysMESH : GlucuronosyltransferaseMESH: Olfactory Receptor NeuronsOlfactory bulbUridine diphosphateEndocrinologychemistryOdorantsMESH : SmellMESH : Olfactory Receptor NeuronsMESH : AnimalsOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryFunction (biology)MESH: Olfactory Pathways
researchProduct

Rat olfactory bulb and epithelium UDP-glucuronosyltransferase 2A1 (UGT2A1) expression: in situ mRNA localization and quantitative analysis.

2001

UDP-glucuronosyltransferases (UGTs) form a multigenic family of enzymes involved in the biotransformation and elimination of numerous endo- and xenobiotic compounds. Beside the diverse UGT isoforms present in the liver as well as in other tissues, the UGT2A1 isoform, also called olfactory UGT, was initially thought to be expressed in the nasal epithelium only. In this work, we demonstrate the UGT2A1 mRNA expression in the olfactory bulb, using in situ hybridization and quantitative reverse transcription-polymerase chain reaction (RT-PCR) techniques. Within the epithelium, UGT2A1 mRNA is mainly found in the sustentacular cells and to a lesser extent in Bowman's gland cells. Moreover, in situ…

Olfactory systemMaleCentral nervous systemNerve Tissue ProteinsIn situ hybridizationBiologyCellular and Molecular NeuroscienceMiceRapid amplification of cDNA endsOlfactory MucosaGene expressionmedicineAnimalsNeurons AfferentRNA MessengerGlucuronosyltransferaseRats WistarMolecular BiologyIn Situ HybridizationAir PollutantsMice Inbred BALB CSequence Homology Amino AcidReverse Transcriptase Polymerase Chain ReactionEpithelial CellsMolecular biologyOlfactory BulbEpitheliumOlfactory bulbRatsIsoenzymesmedicine.anatomical_structureInactivation MetabolicOlfactory epitheliumBrain research. Molecular brain research
researchProduct

Use of ultrasonic vocalizations to assess olfactory detection in mouse pups treated with 3-methylindole.

2005

International audience; Altricial mammals use olfaction long before the olfactory bulb has reached its anatomically mature state. Indeed, while audition and vision are still not functional, the olfactory system of newborn animals can clearly process distinct odorant molecules. Although several previous studies have emphasized the important role that olfaction plays in early critical functions, it has been difficult to develop a sensitive and reliable test to precisely quantify olfactory ability in pups. One difficulty in determining early sensory capabilities is the rather limited behavioral repertory of neonates. The present study examines the use of ultrasonic vocalizations emitted by iso…

Olfactory systemMale[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH: UltrasonicsMESH : Behavior AnimalMESH: Animals NewbornBehavioral NeuroscienceMice0302 clinical medicineDiscrimination PsychologicalUltrasound emissionMESH: SmellMESH: Behavior AnimalUltrasonicsMESH: AnimalsMESH: Discrimination (Psychology)OlfactotoxinBehavior AnimalMESH : Animals Newborn05 social sciencesGeneral MedicineMESH : OdorsSkatoleSmellAltricialmedicine.anatomical_structure[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]MESH : UltrasonicsMESH : Sensory DeprivationMESH : MaleMESH: Vocalization AnimalMESH: SkatoleSensory systemMESH : Mice Inbred C57BLOlfactionBiologyDevelopment03 medical and health sciencesMESH: Mice Inbred C57BLMESH : MicemedicineAnimals0501 psychology and cognitive sciencesSensory deprivation050102 behavioral science & comparative psychologyMESH: MiceBehaviorMESH: Sensory DeprivationMESH: OdorsMESH : Vocalization AnimalMESH : SkatoleMESH : Discrimination (Psychology)OlfactionMESH: MaleOlfactory bulbMice Inbred C57BLOdorAnimals NewbornOdorantsMESH : SmellAnimal Science and ZoologyMESH : AnimalsSensory DeprivationVocalization AnimalOlfactory epitheliumNeuroscience030217 neurology & neurosurgery
researchProduct

Synaptogenesis in the mouse olfactory bulb during glomerulus development

2008

Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses we…

Olfactory systemNeuropilTime FactorsPhalloidineSynaptic MembranesSynaptogenesisGAP-43Nerve Tissue ProteinsBiologymitral cellsSynaptic TransmissionOlfactory Receptor NeuronsMiceGAP-43 ProteinOlfactory MucosaOlfactory nerveolfactory sensory neuronsNeuropilmedicineAnimalsGlomerulus (olfaction)Membrane GlycoproteinsGeneral NeuroscienceSV-2Cell DifferentiationDendritesOlfactory BulbOlfactory bulbmedicine.anatomical_structureSynapsesembryonic structuresSynaptic VesiclesOlfactory ensheathing gliaolfactory epitheliumsense organsNeuroscienceOlfactory epitheliumBiomarkers
researchProduct

Types of cholecystokinin-containing periglomerular cells in the mouse olfactory bulb

2010

The periglomerular cells (PG) of the olfactory bulb (OB) are involved in the primary processing and the refinement of sensory information from the olfactory epithelium. The neurochemical composition of these neurons has been studied in depth in many species, and over the last decades such studies have focused mainly on the rat. The increasing use of genetic models for research into olfactory function demands a profound characterization of the mouse olfactory bulb, including the chemical composition of bulbar interneurons. Regarding both their connectivity with the olfactory nerve and their neurochemical fate, recently, two different types of PG have been identfied in the mouse. In the prese…

Olfactory systemOlfactory NervebiologyOlfactory tubercleMice TransgenicOlfactory BulbOlfactory bulbMice Inbred C57BLMiceCellular and Molecular NeuroscienceNeurochemicalmedicine.anatomical_structureOlfactory nerveInterneuronsSynapsesGenetic modelbiology.proteinmedicineAnimalsCholecystokininNeuroscienceOlfactory epitheliumParvalbuminJournal of Neuroscience Research
researchProduct