Search results for "Oil Production"
showing 10 items of 59 documents
First laser ions at an off-line mass separator of the ISAC facility at TRIUMF
2004
For efficient and in particular for selective production of radioactive ion beams at on-line mass separator facilities the technique of resonance ionization laser ion sources (RILIS) has become the most powerful tool. In facilities like ISOLDE at CERN they nowadays represent the most commonly used type of ion source for rare short-lived isotopes, delivering highest suppression of isobaric contaminations. For a first off-line demonstration preparing the development and installation of such a laser ion source at the new ISAC facility at TRIUMF in Vancouver (Canada), an all solid state laser system developed at the University of Mainz (Germany), was transferred and tested there at an off-line …
Atom beam emersion from hot cavity laser ion sources
2020
Abstract Ion sources exploiting laser resonance ionization offer efficient and element-selective radioactive ion beam production at the leading isotope separation on-line facilities worldwide. Most commonly, laser resonance ionization takes place inside a resistively heated atomizer tube directly coupled to the production target, where the element of interest is evaporated and provided as atomic vapor. While naturally the majority of atoms is ionized inside this hot cavity, a fraction of the neutrals effuses towards the high voltage beam extraction system of the subsequent mass separator. We report on several systematic investigations on this phenomenon regarding its significance and implic…
Status report of the SARA IGISOL used in the study of the 238U(α 40 MeV, ƒ) reaction
1992
Abstract A new ion guide isotope separator on-line (IGISOL), operating with the SARA facility, has been constructed. Using the 238U(α 40 MeV, ƒ) reaction to produce very neutron-rich radioisotopes, all mass chains from A = 96 to 122 have been scanned by conventional methods of nuclear spectroscopy. Provided the stopping volume is separated from the primary beam, it has been proved that the yield is nearly proportional to the He pressure. In addition to the usual advantages (quasi-independence from physical and chemical properties of elements), this makes IGISOL a powerful technique for high energy recoil products. During the experiments the boundary of known neutron-rich nuclei was reached …
First spatial isotopic separation of relativistic uranium projectile fragments
1994
Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has …
The new vacuum-mode recoil separator MARA at JYFL
2008
Abstract A new vacuum-mode recoil separator MARA (Mass Analysing Recoil Apparatus) is under design and construction at the Department of Physics in the University of Jyvaskyla. The separator is intended to separate reaction products from the primary beam in mass region below A = 150 . The ion-optical configuration of the separator will be QQQDEDM, where a magnetic quadrupole (Q) triplet is followed by an electrostatic deflector (DE) and a magnetic dipole (DM). The total length of MARA will be less than 7.0 m and the first order resolving power more than 250 for a beam spot size of 2 mm. In this contribution the main properties of MARA are given and results from simulations are shown.
The on-line isotope separation facility helios at the mainz reactor
1980
Abstract The on-line isotope separation facility HELIOS consisting of a helium-jet transport system coupled to a high transmission mass separator is described. The main characteristics of the system were determined from γ-ray measurements on neutron-rich nuclides. The transmission from the target to the skimmer is about 60%; the overall efficiency for typical fission product elements is 0.05–0.2% and the transit time for Cs is about 1.0 s.
Achievements and Perspectives in the Search for Super Heavy Elements
2004
The elements with the atomic numbers 107-112 have been synthesized and unambiguously identified at the velocity filter SHIP at GSI. The technique allowing for this successful experimental program is the combination of the detection of correlations between evaporation residues and subsequent a-decays with a powerful separator. The sensitivity limit of the set-up at GSI has reached the lpb level. For systematic investigation in this region of extremely low cross section and to synthesize nuclei of higher Z this limit has to be pushed to even lower values. An extensive development program is pursued at SHIP in order to reach at least an order of magnitude lower cross sections. Apart from targe…
A new plunger device to measure lifetimes of unbound states in tagged exotic nuclei
2012
A new plunger device has been designed and is being built at the University of Manchester to measure lifetimes of unbound states in exotic nuclei approaching the proton drip-line. The device is designed to work in both vacuum and gas environments and will be used in conjunction with the gas filled separator RITU and the vacuum-mode separator MARA at the University of Jyvaskyla, Finland. This will enable the accurate measurement of excited state lifetimes identified via isomer and charged-particle tagging. The plunger will be used to address many key facets of nuclear structure physics with particular emphasis on the effect of deformation on proton emission rates.
Ultra-high resolution mass separator—Application to detection of nuclear weapons tests
2009
Abstract A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, 133mXe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors.
A study of a helium-jet ion guide for an on-line isotope separator
1981
Abstract A new method based on helium-jet techniques permits primary recoil ions, produced in radioactive decay or in nuclear reactions to be run directly through a mass separator. Results obtained with a 227 Ac source promise qualities complementary with those obtained with conventional ion sources and indicate an overall efficiency of the order of 10%. Preliminary results with 20 Na recoils from the 20 Ne(p,n)-reaction indicate that most of the ionic species transported out from the target chamber are negatively charged.