Search results for "Oomycetes"

showing 6 items of 16 documents

Isolation frequency and efficiency of mycoparasitic Pythium species in the West Mediterranean region of Turkey

2021

Abstract A total of 132 mycoparasitic Pythium isolates were obtained from the soil samples taken from fruit orchards, vegetable fields, carnation greenhouses, sugarbeet fields and cereal fields in the West Mediterranean region of Turkey. The Oomycetes were isolated by using; surface soil dilution plate, sclerotia bait and precolonised plate methods. Isolates were identified as P. acanthophoron, P. amasculinum, P. lycopersicum, P. oligandrum, P. periplocum and P. paroecandrum, according to their morphological and molecular characteristics. The most commonly isolated mycoparasitic species were P. amasculinum and P. lycopersicum. The majority of the mycoparasites came from soil samples taken f…

IdentificationbiologyBiological pest controlBiocontrolCarnationDual culturebiology.organism_classificationIsolation (microbiology)Rhizoctonia solaniHorticultureOomycetesSoil-borne plant pathogensPythiumAntifungal activitySclerotiniaTP248.13-248.65West mediterraneanBotrytis cinereaBiotechnologyCurrent Research in Biotechnology
researchProduct

Corrigendum: Species Richness, rRNA Gene Abundance, and Seasonal Dynamics of Airborne Plant-Pathogenic Oomycetes

2019

Microbiology (medical)Sanger sequencingSanger sequencingSeasonal distributionEcologylcsh:QR1-502airborne OomycetesBiologyRibosomal RNAMicrobiologyplant pathogenlcsh:Microbiologysymbols.namesakeseasonal distributionqPCR analysisAbundance (ecology)PeronosporomycetessymbolsSpecies richnessGenePeronosporomycetesFrontiers in Microbiology
researchProduct

A β-1,3 Glucan Sulfate Induces Resistance in Grapevine against Plasmopara viticola Through Priming of Defense Responses, Including HR-like Cell Death

2008

Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybri…

OLIGOSACCHARIDESpores0106 biological sciencesPhysiologyDEFENSE REACTIONSCyclopentanesGenes Plant01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyTobacco mosaic virusPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyVitisOxylipinsGlucansPlant Diseases030304 developmental biology0303 health sciencesCell DeathbiologyPOTENTIALISATIONINDUCED RESISTANCEJasmonic acidCallosefood and beveragesTobamovirusHydrogen PeroxideGeneral Medicinebiology.organism_classificationImmunity InnateUp-RegulationElicitorPlant LeavesOomyceteschemistryPlasmopara viticolaPlant StomataDowny mildewAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions®
researchProduct

Are elicitins cryptograms in plant-oomycete communications?

1999

Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applica…

Phytophthora0106 biological sciences[SDV]Life Sciences [q-bio]Molecular Sequence DataMutagenesis (molecular biology technique)Context (language use)01 natural sciencesHost-Parasite InteractionsEvolution MolecularFungal Proteins03 medical and health sciencesCellular and Molecular NeuroscienceErgosterolGene Expression Regulation FungalTobaccoPlant defense against herbivoryAmino Acid SequenceMolecular BiologyPhylogenyComputingMilieux_MISCELLANEOUSPlant Diseases030304 developmental biologyPharmacologyOomycete0303 health sciencesBase SequencebiologyAlgal Proteinsfungifood and beveragesElicitinCell Biologybiology.organism_classification[SDV] Life Sciences [q-bio]Plants ToxicOomycetesBiochemistryMolecular MedicinePhytophthoraSequence AlignmentPlant lipid transfer proteinsFunction (biology)BiotechnologySignal Transduction010606 plant biology & botany
researchProduct

Co-Infections by Fusarium circinatum and Phytophthora spp. on Pinus radiata: Complex Phenotypic and Molecular Interactions

2021

13 Pág. Instituto de Ciencias Forestales (ICIFOR)

Plant-defense molecular mechanismsFusarium circinatumPlant SciencePhytophthora xcambivoraArticleMicrobiologyplant- oomycetes- fungal interactionPlant defense against herbivoryMonterey pinePathogenEcology Evolution Behavior and Systematicshousekeeping gene<i>Phytophthora</i> <i>xcambivora</i>Housekeeping genesEcologybiologyInoculationPlant- oomycetes- fungal interactionsPinus radiataBotanySettore AGR/12 - Patologia Vegetaleplant-defense molecular mechanismbiology.organism_classificationPR3PR5Housekeeping gene<i>P. parvispora</i>QK1-989ChitinasePALbiology.proteinPitch canker diseasePhytophthoraGene expressionP. parvispora<i>Phytophthora xcambivora</i>pitch canker disease; Monterey pine; Phytophthora xcambivora; P. parvispora; plant- oomycetes- fungal interactions; gene expression; housekeeping genes; plant-defense molecular mechanisms; PR3; PR5; PAL
researchProduct

Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew–Infected Grapevine Leaves

2015

SPE Pôle IPM UB; International audience; Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days post inoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography / stomatal response and prot…

[SDE] Environmental SciencesProteomicsPhysiology[SDV]Life Sciences [q-bio]stomataMolecular Sequence DataPlant EpidermisFungal ProteinsCell wallPlasmoparaPlasmopara viticolachemistry.chemical_compoundCell WallBotany[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyComputer SimulationVitisAmino Acid SequencePathogenAbscisic acidPhylogenyproteomicGlycoproteinsPlant DiseasesPlant Proteinsplant-microbe interactionFungal proteinSequence Homology Amino AcidbiologyfungiPlant Stomatafood and beveragesGeneral MedicineChromatography Ion Exchangebiology.organism_classificationApoplast[SDV] Life Sciences [q-bio]Plant LeavesOomycetesBiochemistrychemistryVitis viniferaHost-Pathogen InteractionsPlant Stomata[SDE]Environmental SciencesDowny mildewguard cellAgronomy and Crop ScienceMolecular Plant-Microbe Interactions®
researchProduct