Search results for "Optic"

showing 10 items of 15126 documents

Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers

2016

Abstract The self-sustained propagating reaction occurring in nanometric metallic multilayers was studied by means of molecular dynamics (MD) and numerical modeling. We focused on the phenomenon of the exothermic dissolution of one metallic reactant into the less refractory one, such as Ni into liquid Al. The exothermic character is directly related to a negative enthalpy of mixing. An analytical model based on the diffusion-limited dissolution [1] coupled with heat transfer was derived to account for the main aspects of the process. Together, several microscopic simulations were carried out. The first series were set up to obtain all the parameters governing the process, including the heat…

010302 applied physicsExothermic reactionMaterials sciencePolymers and PlasticsMetals and AlloysThermodynamics02 engineering and technology021001 nanoscience & nanotechnologyEnthalpy of mixing01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsCrystallographyScientific methodvisual_art0103 physical sciencesHeat transferCeramics and Compositesvisual_art.visual_art_mediumDiffusion (business)0210 nano-technologyDissolutionActa Materialia
researchProduct

High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition

2020

The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).

010302 applied physicsFabricationMaterials sciencebusiness.industrydiodesSi doped02 engineering and technologyfabrication021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPulsed laser depositiongallium oxideGallium oxideQuality (physics)wide bandgap0103 physical sciencesSapphire:NATURAL SCIENCES:Physics [Research Subject Categories]Optoelectronics0210 nano-technologybusinesspulsed laser depositionDiodephysica status solidi (b)
researchProduct

Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics

2019

Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …

010302 applied physicsFerrofluidMaterials scienceField (physics)Field effect02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter::Soft Condensed MatterViscosityRheologyChemical physics0103 physical sciencesMagnetic nanoparticlesMulti-particle collision dynamics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

High-frequency electrodeless lamps in argon–mercury mixtures

2005

In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…

010302 applied physicsGas-discharge lampArgonAcoustics and Ultrasonics[SPI.PLASMA]Engineering Sciences [physics]/PlasmasAnalytical chemistrychemistry.chemical_elementPlasmaRadiationCondensed Matter Physics01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionMercury (element)010309 opticsWavelengthchemistrylawExcited state0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputingMilieux_MISCELLANEOUS
researchProduct

IEEE Magnetics Society Distinguished Lecturers for 2020

2019

With information technology consuming a sizeable part of the total energy, “Green IT” information storage and computing technology will have a major impact on addressing societal challenges.

010302 applied physicsGreen computingComputer sciencebusiness.industry0103 physical sciencesInformation technologyElectrical and Electronic EngineeringTotal energybusinessTelecommunications01 natural sciencesElectronic Optical and Magnetic MaterialsIEEE Transactions on Magnetics
researchProduct

Space charge behavior of different insulating materials employed in AC and DC cable systems

2017

In this work, the space charge accumulation in three different XLPE based material has been carried out by using the PEA (Pulsed Electro-Acoustic) method. The specimens provided by a cables industry have been subjected to the same DC stress during polarization time at environment temperature. Afterwards, the high voltage generator has been turned off and the amount residual charge has been evaluated. The space charge profiles during polarization and depolarization have been carried out and compared. Finally, the distribution of electric field within the samples has been reported. In particular, the maximum distortion of electric field has been calculated by taking into account the distribut…

010302 applied physicsHvdcMaterials scienceCondensed matter physics020209 energyDepolarizationHigh voltage02 engineering and technologyDC stre01 natural sciencesSpace chargeSpace chargeElectronic Optical and Magnetic MaterialsSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaPea methodElectric field0103 physical sciencesResidual charge0202 electrical engineering electronic engineering information engineeringAdditiveElectrical and Electronic EngineeringPolarization (electrochemistry)2017 International Symposium on Electrical Insulating Materials (ISEIM)
researchProduct

Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels

2018

Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…

010302 applied physicsIntegral imagingPixelLenslet arrayComputer sciencebusiness.industryMechanical EngineeringResolution (electron density)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONÒptica01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVolumetric reconstruction010309 opticsQuality (physics)0103 physical sciencesComputer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessImatges Processament Tècniques digitalsComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Integral-Imaging display from stereo-Kinect capture

2017

In this paper, we propose a new approach in order to improve the quality of microimages and display them onto an integral imaging monitor. Our main proposal is based on the stereo-hybrid 3D camera system. Originally, hybrid camera system has dissimilarity itself. We interpret our method in order to equalize the hybrid sensor's characteristics and 3D data modification strategy. We generate integral image by using synthetic back-projection mapping method. Finally, we project the integral image onto our proposed display system. We illustrate this procedure with some imaging experiments in order to prove an advantage of our approach.

010302 applied physicsIntegral imagingbusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPoint cloudStereo display01 natural sciencesÒptica Aparells i instrumentsImage (mathematics)010309 opticsComputer graphics (images)0103 physical sciences3d cameraComputer visionArtificial intelligencebusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition

2020

Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…

010302 applied physicsKelvin probe force microscopeMaterials sciencePassivationSiliconAnnealing (metallurgy)OxideAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAtomic layer depositionchemistry.chemical_compoundchemistry0103 physical sciencesElectrical and Electronic EngineeringThin film0210 nano-technologyUltraviolet photoelectron spectroscopyIEEE Journal of Photovoltaics
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

2016

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

010302 applied physicsKelvin probe force microscopeMaterials sciencesurface potentialbusiness.industrySystem of measurementPhysicsQC1-999Composite numberGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticscontact potential differencekelvin probe0103 physical sciences0210 nano-technologybusinessVolta potentialVoltageLatvian Journal of Physics and Technical Sciences
researchProduct