Search results for "Optical microscope"
showing 10 items of 157 documents
On-line monitoring of one-step laser fabrication of micro-optical components
2002
The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlen…
Scanning optical microscopy modeling in nanoplasmonics
2012
International audience; One of the main purposes of nanoplasmonics is the miniaturization of optical and electro-optical components that could be integrable in coplanar geometry. In this context, we propose a numerical model of a polarized scanning optical microscope able to faithfully reproduce both photon luminescence and temperature distribution images associated with complex plasmonic structures. The images are computed, pixel by pixel, through a complete self-consistent scheme based on the Green dyadic functions (GDF) formalism. The basic principle consists in the numerical implementation of a realistic three-dimensional light beam acting as a virtual light tip able to probe the volume…
Chapter 1 The Resolution Challenge in 3D Optical Microscopy
2009
Publisher Summary This chapter discusses the theoretical principles of 3D microscopy with the widespread realizations of 3D microscopy.Based on the paraxial diffraction equations, it has been shown that conventional microscopes, when dealing with 3D fluorescent samples, provide sets of 2D images. These images of the different transverse sections of the 3D object contain, in addition to the sharp image of the in focus section, the blurred images of the rest of the specimen. The paraxial formalism has been generalized in a very simple way to a non-paraxial context, showing that the equations that govern non-paraxial imaging are similar to those that govern paraxial imaging. The only differenc…
Resolution enhancement in quantitative phase microscopy
2019
Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, suc…
Analysis of the imaging method for assessment of the smile of laser diode bars.
2009
We study imaging systems designed to assess the smile of laser diode bars (LDBs). The magnification matrix is derived from the required sampling period and the geometries of the LDBs and the charge-coupled device (CCD) array. These image-forming systems present in-plane pure translation invariance, but in the case of anamorphic ones, lack in-plane rotation invariance. It is shown that the smile parameters of the image of the LDB are linked with the smile parameters of the LDB by simple mathematical expressions. The spatial resolution of such optical systems is estimated at approximately 1 microm for a mean wavelength of lambda approximately 800 nm. Our results suggest that, with the current…
Physics of Near-Field Optical Images
2005
From Measurement to Control of Electromagnetic Waves using a Near‐field Scanning Optical Microscope
2013
Simultaneous observation of light localization and confinement in near-field optics
2001
We report on the observation, in direct space, of both light localization and confinement effects near lithographically designed structures. The sample is observed in the optical near-field zone with a Photon Scanning Tunneling Microscope (PSTM). Several patterns composed of a few periods of TiO2 dots, arranged as a hexagonal lattice, have been investigated. When the central dot of the pattern is removed, a phenomenon of light localization above the vacancy can be observed in the PSTM image. The occurrence of this phenomenon can be related to the variation of the electromagnetic local density of state.
Quasi-isotropic 3-D resolution in two-photon scanning microscopy.
2009
One of the main challenges in three-dimensional microscopy is to overcome the lack of isotropy of the spatial resolution, which results from the axially-elongated shape of the point spread function. Such anisotropy gives rise to images in which significant axially-oriented structures of the sample are not resolved. In this paper we achieve an important improvement in z resolution in two-photon excitation microscopy through spatial modulation of the incident beam. Specifically, we demonstrate that the design and implementation of a simple shaded ring performs quasi-isotropic three-dimensional imaging and that the corresponding loss in luminosity can be easily compensated by most available fe…
Reduction of focus size in tightly focused linearly polarized beams
2004
The electromagnetic theory predicts that when a linearly polarized collimated field is focused by a high-angle focusing system, components perpendicular to the initial polarization are generated. The use of annular masks to reduce the area of the focal spot usually increases the magnitude of this phenomenon, known as depolarization. We present a class of masks, the three-ring masks, which are important because they narrow the central lobe of the focal intensity distribution without increasing the depolarization. This can be very useful in modern optical applications, such as confocal microscopy or multiphoton scanning microscopy.