Search results for "Ordering"
showing 10 items of 55 documents
Conflictual Rebordering: The Russia Policies of Finland and Estonia
2023
This article seeks to analyse the process of conflictual rebordering in the EU’s relations with Russia. The authors single out three major crises that triggered and shaped the process of toughening the border regime and the related transformations of political meaning of the EU-Russia border: the COVID-19 pandemic, the drastic deterioration of Moscow-Brussels relations in the beginning of 2021 and the war in Ukraine that started on 24 February 2022. Correspondingly, the EU’s reactions to each of these critical junctures might be described through the academic concepts of governmentality, normativity and geopolitics. Our aim is to look at the three ensuing models – governmental, normative an…
Fractional generalized cumulative entropy and its dynamic version
2021
Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fract…
Metal-organic magnets with large coercivity and ordering temperatures up to 242°C.
2020
International audience; Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of light…
On the fractional probabilistic Taylor's and mean value theorems
2016
In order to develop certain fractional probabilistic analogues of Taylor's theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution if and only if it is exponential. The nth-order fractional equilibrium density is then used to prove a fractional probabilistic Taylor's theorem based on derivatives of Riemann-Liouville type. A fractional analogue of the probabilistic mean value theorem is thus developed for pairs of nonnegative rand…
Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector
2012
This paper presents a study of the possible ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at center-of-mass energies of √s=900 GeV and √s=7 TeV. The correlations measured in a kinematic region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consis…
Prussian Blue Analogues of Reduced Dimensionality
2012
Abstract: Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is …
Short range charge/orbital ordering in La1−xSrxMn1−zBzO3 (B = Cu,Zn) manganites
2005
We have measured the reflectivity spectra of La1−x SrxMn1−zBzO3 (B = Cu, Zn; 0.17 x 0.30; 0 z 0.10) manganites over wide frequency (100–4000 cm −1 )a nd temperature (80–300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm −1 (external mode), 350 cm −1 (bond bending mode) and 590 cm −1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm −1 below the temperature T1 (T1 < TC), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally orde…
Self-Ordering Secondary Structure of d- and l-Arginine-Derived Polyamidoamino Acids
2017
This paper reports on synthesis, acid–base properties and pH-dependent structuring in water of d-, l- and d,l-ARGO7, bioinspired polymers obtained by polyaddition of the corresponding arginine stereoisomers with N,N′-methylenebis(acrylamide). The circular dichroism spectra of d- and l-ARGO7 showed a peak at 228 nm and quickly and reversibly responded to pH changes, but were nearly unaffected by temperature, ionic strength, and denaturating agents. Theoretical modeling studies of L-ARGO7 showed that it assumed a folded structure. Intramolecular interactions led to transoid arrangements of the main chain reminiscent of the protein hairpin motif. Torsion angles showed a quite similar distribut…
Strain-controlled domain wall injection into nanowires for sensor applications
2021
We investigate experimentally the effects of externally applied strain on the injection of 180$^\circ$ domain walls (DW) from a nucleation pad into magnetic nanowires, as typically used for DW-based sensors. In our study the strain, generated by substrate bending, induces in the material a uniaxial anisotropy due to magnetoelastic coupling. To compare the strain effects, $Co_{40}Fe_{40}B_{20}$, $Ni$ and $Ni_{82}Fe_{18}$ samples with in-plane magnetization and different magnetoelastic coupling are deposited. In these samples, we measure the magnetic field required for the injection of a DW, by imaging differential contrast in a magneto-optical Kerr microscope. We find that strain increases t…
Evidence for the verwey transition in highly nonstoichiometric nanometric fe-based ferrites
2001
The nanometric scale allows an investigation of the Verwey transition: the impact of varying degree of oxidation of Fe cations on this transition was studied by means of zero-field-cooled superconducting quantum interference device measurements in nanometric highly nonstoichiometric particles of pure and Ti-substituted magnetite synthesized using soft chemistry route. It is clearly shown that (i) there is a shift of the transition towards higher temperatures for nanometer scaled compounds and (ii) the amplitude, the temperature, and the order of the transition are only depending on the number of ${\mathrm{Fe}}^{2+}{/\mathrm{F}\mathrm{e}}^{3+}$ pairs in octahedral coordination.