Search results for "P-type"

showing 7 items of 7 documents

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Effect of high temperature annealing (T > 1650 °C) on the morphological and electrical properties of p-type implanted 4H-SiC layers

2019

This work reports on the effect of high temperature annealing on the electrical properties of p-type implanted 4H-SiC. Ion implantations of Aluminum (Al) at different energies (30-200 keV) were carried out to achieve 300 nm thick acceptor box profiles with a concentration of about 10(20) at/cm(3). The implanted samples were annealed at high temperatures (1675-1825 degrees C). Morphological analyses of the annealed samples revealed only a slight increase of the surface roughness RMS up to 1775 degrees C, while this increase becomes more significant at 1825 degrees C (RMS = 1.2 nm). Room temperature Hall measurements resulted in a hole concentration in the range 0.65-1.34 x 10(18)/cm(3) and m…

4H-SiCMaterials scienceFabricationAnnealing (metallurgy)Analytical chemistrychemistry.chemical_element02 engineering and technologyActivation energy01 natural sciencesIonAluminium0103 physical sciencesSurface roughnessGeneral Materials ScienceElectrical measurements010302 applied physicsCondensed Matter - Materials ScienceMechanical EngineeringPhysics - Applied Physics021001 nanoscience & nanotechnologyCondensed Matter PhysicsAcceptorPost implantation annealingchemistryMechanics of MaterialsElectrical activationp-type implantation0210 nano-technologyMaterials Science in Semiconductor Processing
researchProduct

The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots

2005

*† ‡ § Summary Since copper (Cu) is essential in key physiological oxidation reactions, organisms have developed strategies for handling Cu while avoiding its potentially toxic effects. Among the tools that have evolved to cope with Cu is a network of Cu homeostasis factors such as Cu-transporting P-type ATPases that play a key role in transmembrane Cu transport. In this work we present the functional characterization of an Arabidopsis Cutransporting P-type ATPase, denoted heavy metal ATPase 5 (HMA5), and its interaction with Arabidopsis metallochaperones. HMA5 is primarily expressed in roots, and is strongly and specifically induced by Cu in whole plants. We have identified and characteriz…

ATPaseMolecular Sequence DataMutantArabidopsisPlant ScienceGenes PlantPlant RootsMetallochaperonesArabidopsisGeneticsAmino Acid SequenceRNA MessengerDNA PrimersAdenosine TriphosphatasesBase SequenceSequence Homology Amino AcidbiologyArabidopsis ProteinsCell BiologyCompartmentalization (fire protection)biology.organism_classificationTransmembrane proteinCell biologyBiochemistryChaperone (protein)biology.proteinP-type ATPaseCopperMolecular ChaperonesThe Plant Journal
researchProduct

Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere

2015

Doping and stability of monolayer low defect content graphene transferred on a silicon dioxide substrate on silicon are investigated by micro-Raman spectroscopy and atomic force microscopy (AFM) during thermal treatments in oxygen and vacuum controlled atmosphere. The exposure to molecular oxygen induces graphene changes as evidenced by a blue-shift of the G and 2D Raman bands, together with the decrease of I2D/IG intensity ratio, which are consistent with a high p-type doping (∼1013 cm-2) of graphene. The successive thermal treatment in vacuum does not affect the induced doping showing this latter stability. By investigating the temperature range 140-350 °C and the process time evolution, …

Controlled atmosphereMaterials scienceSiliconGrapheneElectronic Optical and Magnetic MaterialDopinggrapheneSettore FIS/01 - Fisica SperimentaleAnalytical chemistrychemistry.chemical_elementSurfaces Coatings and FilmSubstrate (electronics)Thermal treatmentOxygenSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionGeneral EnergyEnergy (all)chemistrylawMonolayeroxygen annealingp-type dopingPhysical and Theoretical Chemistry
researchProduct

Substrate and atmosphere influence on oxygen p-doped graphene

2016

Abstract The mechanisms responsible for p-type doping of substrate supported monolayer graphene (Gr) by thermal treatments in oxygen ambient have been investigated by micro-Raman spectroscopy, atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), considering commonly employed dielectric substrates, such as SiO 2 and Al 2 O 3 thin films grown on Si. While a high p-type doping (∼10 13  cm −2 ) is observed for Gr on SiO 2 , no significant doping is found for Gr samples on the Al 2 O 3 substrate, suggesting a key role of the Gr/SiO 2 interface states in the trapping of oxygen responsible for the Gr p-type doping. Furthermore, we investigated the doping stability of Gr on SiO…

Materials sciencegenetic structuresSettore FIS/01 - Fisica SperimentaleDopingAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral ChemistrySubstrate (electronics)Dielectric010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesNitrogenOxygenGraphene doping substrate effects thermal effects Raman Spectroscopy0104 chemical sciencesp-type doped grapheneX-ray photoelectron spectroscopychemistryoxygen annealingGeneral Materials ScienceThin film0210 nano-technologySpectroscopyCarbon
researchProduct

Sequence analysis of the VP7 and VP4 genes identifies a novel VP7 gene allele of porcine rotaviruses, sharing a common evolutionary origin with human…

2005

AbstractDuring an epidemiological survey encompassing several porcine herds in Saragoza, Spain, the VP7 and VP4 of a rotavirus-positive sample, 34461-4, could not be predicted by using multiple sets of G- and P-type-specific primers. Sequence analysis of the VP7 gene revealed a low amino acid (aa) identity with those of well-established G serotypes, ranging between 58.33% and 88.88%, with the highest identity being to human G2 rotaviruses. Analysis of the VP4 gene revealed a P[23] VP4 specificity, as its VP8* aa sequence was 95.9% identical to that of the P14[23],G5 porcine strain A34, while analysis of the VP6 indicated a genogroup I, that is predictive of subgroup I specificity. Analysis …

RotavirusSerotypeSwineSequence analysisvirusesMolecular Sequence DataBiologyEvolution MolecularAntigenic Diversityfluids and secretionsPhylogeneticsVirologyAnimalsHumansAmino Acid SequenceAlleleAntigens ViralPeptide sequenceGeneAllelesPhylogenyGeneticsvirus diseasesP-typeVirologyHypervariable regionVP7VP4Capsid ProteinsG-typeSequence AnalysisVirology
researchProduct

Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure

2021

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540) as well as by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002 for A.I. Popov. In addition, J. Purans is grateful to the ERAF project 1.1.1.1/20/A/057 while A. Platonenko was supported by Latvian Research Council No. LZP-2018/1-0214. The authors thank A. Lushchik and M. Lushchik for many useful discussions. The research was (partly) performed in the Institute of Solid State Physics, University of Latvia ISSP UL. ISSP UL as…

TechnologyDEEP DONOR02 engineering and technologyConductivityDFT01 natural sciencesOXYGENCrystalpoint defectsGeneral Materials ScienceDENSITY FUNCTIONAL THEORYGalliump-type conductivityMicroscopyQC120-168.85Condensed matter physicsMONOCLINICSTP TYPE CONDUCTIVITYELECTRONIC.STRUCTUREEngineering (General). Civil engineering (General)021001 nanoscience & nanotechnology3. Good healthCALCULATIONSβ-Ga<sub>2</sub>O<sub>3</sub>OXYGEN VACANCIES:NATURAL SCIENCES [Research Subject Categories]Density functional theoryElectrical engineering. Electronics. Nuclear engineeringTA1-20400210 nano-technologyPOINT DEFECTSFIRST PRINCIPLE CALCULATIONSβ-Ga2O3Materials scienceP-TYPE CONDUCTIVITYELECTRONIC STRUCTUREVACANCY DEFECTSchemistry.chemical_elementElectronic structureFIRST-PRINCIPLE DENSITY-FUNCTIONAL THEORIESGALLIUM COMPOUNDSArticleDENSITY-FUNCTIONAL-THEORYVacancy defect0103 physical sciences010306 general physicsΒ-GA2 O3QH201-278.5HYBRID EXCHANGEoxygen vacancyCrystallographic defectTK1-9971Descriptive and experimental mechanicschemistryGALLIUMdeep donorSupercell (crystal)DFT; β-Ga<sub>2</sub>O<sub>3</sub>; oxygen vacancy; deep donor; p-type conductivity; point defectsOXYGEN VACANCYMaterials
researchProduct