Search results for "PESTS"

showing 10 items of 27 documents

Arqueoentomología y arqueobotánica de los espacios de almacenamiento a largo plazo: el granero de Risco Pintado, Temisas (Gran Canaria)

2019

This contribution aims at understanding the storage techniques used in the past by means of studying the entomological and plant remains present in the pre-hispanic granary of Risco Pintado, dated between the IX and XV centuries cal AD.This type of granary groups together a large number of silos excavated in the volcanic tuff, situated on steep escarpments, difficult to access and easy to defend.The exceptional environmental conditions of these infrastructures have allowed the desiccated remains of the stored plant products and the pests associated with such storage to be preserved within the silos.The domestic species documented include cereals (barley and wheat), legumes (broad beans and …

010506 paleontologyArcheologyPlant remainsCanary IslandsGranary01 natural sciencesInsecticidasIslas CanariasAlimentos0601 history and archaeologyGraneros en cuevasGranaries in caveInsecticideRestos vegetales0105 earth and related environmental sciencesPrehispanicPrehispánico060102 archaeologybiologyWeevil06 humanities and the arts15. Life on landPlagas de insectosbiology.organism_classificationGeographyArchaeologyAgronomyBroad beansFoodInsects pestsCC1-960Trabajos de Prehistoria
researchProduct

Complex responses of global insect pests to climate warming

2020

Although it is well known that insects are sensitive to temperature, how they will be affected by ongoing global warming remains uncertain because these responses are multifaceted and ecologically complex. We reviewed the effects of climate warming on 31 globally important phytophagous (plant‐eating) insect pests to determine whether general trends in their responses to warming were detectable. We included four response categories (range expansion, life history, population dynamics, and trophic interactions) in this assessment. For the majority of these species, we identified at least one response to warming that affects the severity of the threat they pose as pests. Among these insect spec…

0106 biological sciences010504 meteorology & atmospheric sciencesEcologyinsect pestsEcologymedia_common.quotation_subjectGlobal warmingfungiVDP::Landbruks- og Fiskerifag: 900::Landbruksfag: 910::Skogbruk: 915levinneisyysInsectBiologyilmastonmuutokset010603 evolutionary biology01 natural sciencespopulaatiodynamiikkaPeer reviewclimate warmingtuhohyönteisethyönteisetAdaptationBiological sciencesEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesmedia_common
researchProduct

Insecticidal Activity of Bacillus thuringiensis Proteins against Coleopteran Pests

2020

Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and…

0106 biological sciencesCrops AgriculturalOrder ColeopteraHealth Toxicology and Mutagenesismedia_common.quotation_subjectBacillus thuringiensis proteinsBacillus thuringiensislcsh:MedicineInsectGenetically modified cropsReviewToxicologyInsecticidal activity01 natural sciencesinsecticidal activityLepidoptera genitalia03 medical and health sciencesHemolysin Proteinsmode of actionBacillus thuringiensisBotanyAnimalsstructureMode of actionPest Control Biologicalcoleopteran pests030304 developmental biologymedia_common0303 health sciencesbiologyBacillus thuringiensis Toxinslcsh:RfungiStructurebiology.organism_classificationPlants Genetically ModifiedColeopteraEndotoxins010602 entomologyBiological Control AgentsMode of actionColeopteran pests<i>Bacillus thuringiensis</i> proteinsBacteriaToxins
researchProduct

The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest

2020

Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of…

0106 biological sciencesFil·loxeraPhysiology[SDV]Life Sciences [q-bio]Introduced speciesPlant Science01 natural sciencesGenomeGene duplicationsStructural BiologyVitislcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hunger0303 health scienceseducation.field_of_studyHost plant interactionsGenomeEndosymbiosisbiologyfood and beveragesBiological SciencesBiological EvolutionGeneral Agricultural and Biological SciencesRootstockInfectionDaktulosphaira vitifoliaeBiotechnologyResearch ArticlePopulation010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHemiptera03 medical and health sciencesGeneticsInsect pestsAnimalsPlagues d'insectesAdaptationBiological invasionsGenomeseducationPhylloxeraEcology Evolution Behavior and Systematics030304 developmental biologyObligateHuman GenomeViticulturaCell Biology15. Life on landbiology.organism_classificationBiologicalEffectorsClimate Actionlcsh:Biology (General)13. Climate actionEvolutionary biologyArthropod genomesPhylloxeraAdaptationIntroduced SpeciesInsectAnimal DistributionDevelopmental Biology
researchProduct

Composition, Antifungal, Phytotoxic, and Insecticidal Activities of Thymus kotschyanus Essential Oil

2020

Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and &gamma

0106 biological sciencesInsecticidesAntifungal AgentsPharmaceutical ScienceOryzaephilus surinamensisCyclohexane Monoterpenespost-harvest management01 natural sciencesArticleGas Chromatography-Mass SpectrometryAnalytical Chemistrylaw.inventionThymus Plantlcsh:QD241-441chemistry.chemical_compound0404 agricultural biotechnologylcsh:Organic chemistrylawthymol010608 biotechnologyDrug DiscoveryOils VolatileAnimalsPlant OilsCarvacrolPhysical and Theoretical Chemistryγ-terpeneThymolEssential oilBotrytis cinereabiologySitophilusOrganic Chemistrymonoterpenesfood and beverages04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceFungicideHorticulturechemistryChemistry (miscellaneous)Molecular Medicinecrop pestsPenicillium expansumMolecules
researchProduct

Tomato trichomes are deadly hurdles limiting the establishment of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae)

2021

[EN] Amblyseius swirskii is a predatory mite widely used for the control of very important pest species, such as whiteflies and thrips, in organic farming and conventional agriculture. However, this species cannot establish on tomato crops, probably due to the toxic effects of plant trichomes and their exudates. We evaluated tomato plants for effects on: a) A. swirskii preference mediated by plant volatiles, b) A. swirskii development, predation capacity and reproductive performance, c) the dispersal and survival of mites as affected by stem trichomes, and d) mite survival as a function of secondary metabolites secreted by tomato trichomes. The results showed that A. swirskii mites which ga…

0106 biological sciencesPhytoseiidaeH10 Pests of plantsBiological pest control01 natural sciencesPredationAcyl sugarsPepperhost plant defenseMiteBIOQUIMICA Y BIOLOGIA MOLECULARpredatory mitesAcariacyl sugars2. Zero hungerbiologyToxicityPredatory mitesfungifood and beveragestoxicitybiology.organism_classificationTrichome010602 entomologyHorticultureHost plant defenseInsect SciencePEST analysisAgronomy and Crop Science010606 plant biology & botany
researchProduct

Next-generation biological control

2020

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Nex…

0106 biological sciencesProteomicsH10 Pests of plantsInternationalityComputer science[SDV]Life Sciences [q-bio]Laboratory of VirologySequence assemblybiological controlmicrobiome01 natural sciencesGenome editinggeneticsNagoya ProtocolLaboratory of EntomologyCYTOPLASMIC INCOMPATIBILITY2. Zero hunger0303 health sciencesQUANTITATIVE TRAIT LOCICommercefood and beveragesCONTROL AGENTSPE&RCBiosystematiekNASONIA-VITRIPENNISGUT CONTENT-ANALYSIS[SDE]Environmental SciencesTraitinsect breedingAXYRIDIS COLEOPTERA-COCCINELLIDAEOriginal ArticleLaboratory of GeneticsLIFE-HISTORY TRAITSGeneral Agricultural and Biological SciencesGenomicsContext (language use)Computational biology[SDV.BID]Life Sciences [q-bio]/Biodiversityartificial selectionQuantitative trait locusAnimal Breeding and GenomicsLaboratorium voor Erfelijkheidsleer010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyLaboratorium voor Virologiemodelling03 medical and health sciencesgenomics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyFokkerij en GenomicaPARASITOID WASPSelection (genetic algorithm)modelling.030304 developmental biologySEX DETERMINATIONOriginal ArticlesLaboratorium voor EntomologieWIASgenome assemblyBiosystematicsEPSartificial selection biological control genetics genome assembly genomics insect breeding microbiome modellingBiological Reviews
researchProduct

Climate vs grapevine pests and diseases worldwide: The first results of a global survey

2016

&lt;p class="Abstract"&gt;&lt;strong&gt;Aim:&lt;/strong&gt; This paper aimed to address the relationship between grapevine disease, pest occurrences and climate. The extremely large extension of viticulture worldwide offers the possibility to evaluate the impacts of climate variability on many aspects of the grape growing system. For this, we initiated a global survey to retrieve the most important diseases and pests in many grape growing regions worldwide and to identify the risk of exposure to pests and diseases of viticulture as a function of climate.&lt;/p&gt;&lt;p class="Abstract"&gt;&lt;strong&gt;Methods and results:&lt;/strong&gt; Based on the answer of respondent about the main repo…

0106 biological sciences[SDV]Life Sciences [q-bio][SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyravageurGrowing seasonDistribution (economics)Climate changeDiseasesDiseaseHorticulture01 natural scienceslcsh:Agriculturevitis vinifera[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomylcsh:BotanyComputingMilieux_MISCELLANEOUSPhytosanitary certification2. Zero hungerchangement climatiqueEcologybusiness.industryAgroforestrylcsh:Sfood and beverages04 agricultural and veterinary sciences15. Life on landviticulturediseases;pests;viticulture;climate change;grapevinegrapevinelcsh:QK1-989[SDV] Life Sciences [q-bio]Geographyclimate change[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology13. Climate action[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriesPEST analysis[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/ClimatologyViticulturevignebusinesspestsPowdery mildew010606 plant biology & botanyFood Science
researchProduct

Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrin…

2013

First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the c…

Agricultural BiotechnologyApplied MicrobiologyCoated vesiclePlant SciencePlasma protein bindingMothsBiochemistryOstriniaPlagues ControlBacillus thuringiensisBiomacromolecule-Ligand InteractionsPlant PestsMultidisciplinaryMicrovillibiologyGenetically Modified OrganismsQRAgricultureRecombinant ProteinsBiochemistryLarvaMedicineDisease SusceptibilityAgrochemicalsResearch ArticleBiotechnologyProtein BindingScienceProtein domainBiotecnologia agrícolaBacillus thuringiensisCoated VesiclesCerealsCropsSpodopteraSpodopteraMicrobiologyBinding CompetitiveZea maysBacterial ProteinsBotanyAnimalsPesticidesBinding siteProtein InteractionsBiologyTransgenic PlantsfungiProteinsPlant Pathologybiology.organism_classificationFusion proteinMaizeGastrointestinal TractKineticsPlant BiotechnologyPest ControlProteïnes
researchProduct

Transcriptome profiling of citrus fruit response to huanglongbing disease.

2010

Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB- affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of phot…

CitrusProtein FoldingGene Identification and Analysislcsh:MedicinePlant ScienceTranscriptomechemistry.chemical_compoundRNA interferencePlant Growth RegulatorsGene Expression Regulation PlantModelsGene expressionPlant Genomics2.1 Biological and endogenous factorsPhotosynthesisAetiologylcsh:SciencePlant Growth and DevelopmentPlant PestsMultidisciplinaryProtein StabilityJasmonic acidfood and beveragesHigh-Throughput Nucleotide SequencingAgriculturePlantsCell biologyCarbohydrate MetabolismResearch ArticleSignal TransductionGeneral Science & TechnologyPlant PathogensProtein degradationBiologyModels BiologicalFruitsMolecular GeneticsRhizobiaceaeSettore AGR/07 - Genetica AgrariaHeat shock proteinBotanyGeneticsGene RegulationGene NetworksBiologyTranscription factorPlant DiseasesAnalysis of VarianceGene Expression Profilinglcsh:RCitrus HLB next-generation sequencing candidatus liberibacterComputational BiologyPlantPlant PathologyBiologicalWRKY protein domainGene expression profilingchemistryGene Expression Regulationlcsh:QGene expressionGene FunctionTranscriptomeTranscription Factors
researchProduct