Search results for "PLASMID"
showing 10 items of 327 documents
The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein.
1991
Abstract I have cloned a yeast gene, RGM1, which encodes a proline-rich zinc, finger protein. rgm1 mutants do not show any obvious phenotype but overexpression of RGM1 gene greatly impairs cell growth. The proline-rich region of RGM1 attached to a heterologous DNA binding domain is able to repress the expression of the target gene. RGM1 shares similar zinc finger motifs with the mammalian Egr (early growth response) proteins as well as proline-rich sequences with a high serine and threonine content, suggesting that RGM1 and Egr proteins could have functional similarities.
Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-…
1987
Micrococcal nuclease digestion has been used to investigate some fine details of the chromatin structure of the yeast SUC2 gene for invertase. Precisely positioned nucleosomes have been found on a 2 kb sequence from the 3' non-coding region, and four nucleosomes also seem to occupy fixed positions on the 5' flank. Eleven nucleosomes lie on the coding region, although their positioning is not as precise as in the flanks. When the gene is derepressed, these latter nucleosomes adopt a more open conformation and so do two of the nucleosomes positioned on the 5' flank. A dramatic change occurs in the 3' flank, whose involvement in the structural transitions of chromatin upon gene activation is p…
The Candida albicans UBI3 gene encoding a hybrid ubiquitin fusion protein involved in ribosome biogenesis is essential for growth.
2003
We have constructed a conditional null mutant Candida albicans strain for the UBI3 gene which encodes a ubiquitin fusion protein involved in ribosome biogenesis. A one-step gene disruption procedure, using the plasmid pCaDis, was designed to place the second copy of the UBI3 gene under the control of the tightly regulated MET3 promoter in a C. albicans heterozygous strain (UBI3/Deltaubi3::hisG), previously isolated in the first step of the ura-blaster protocol. Analysis of the conditional null mutant in repressing and inducing conditions indicates that UBI3 is an essential gene whose expression is required for growth of C. albicans.
Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents.
1997
Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Alth…
Role of glycine-82 as a pivot point during the transition from the inactive to the active form of the yeast Ras2 protein
1991
AbstractRas proteins bind either GDP or GTP with high affinity. However, only the GTP-bound form of the yeast Ras2 protein is able to stimulate adenylyl cyclase. To identify amino acid residues that play a role in the conversion from the GDP-bound to the GTP-bound state of Ras proteins, we have searched for single amino acid substitutions that selectively affected the binding of one of the two nucleotides. We have found that the replacement of glycine-82 of the Ras2 protein by serine resulted in an increased rate of dissociation of Gpp(NH)p, a nonhydrolysable analog of GTP, while the GDP dissociation rate was not significantly modified. Glycine-82 resides in a region that is highly conserve…
Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation.
2002
Genetic manipulation of industrial wine yeast strains has become an essential tool for both the study of the molecular mechanisms underlaying their physiology and the improvement of their fermentative properties. The construction of null mutants for any gene in these usually diploid strains, by using a procedure based on sporulation of a heterozygote lacking one copy of the gene of interest, has been tested as an alternative to the tedious work of sequential disruption of the complete set of copies. Our results indicate that most of the homozygotes resulting from sporulation of wine yeast strains are defective in glucose consumption under microvinification conditions in synthetic must and p…
The YJL185C, YLR376C and YJR129C genes of Saccharomyces cerevisiae are probably involved in regulation of the glyoxylate cycle
2006
The ER24 aci (acidification) mutant of Saccharomyces cerevisiae excreting protons in the absence of glucose was transformed with a multicopy yeast DNA plasmid library. Three different DNA fragments restored the wild-type phenotype termed Aci- because it does not acidify the complete glucose medium under the tested conditions. Molecular dissection of the transforming DNA fragments identified two multicopy suppressor genes YJL185C, YJR129C and one allelic YLR376C. Disruption of either of the three genes in wild-type yeast strain resulted in acidification of the medium (Aci+ phenotype) similarly to the original ER24 mutant. These data indicate the contribution of the ER24 gene product Ylr376Cp…
Trx2p-dependent Regulation of Saccharomyces cerevisiae Oxidative Stress Response by the Skn7p Transcription Factor under Respiring Conditions
2013
The whole genome analysis has demonstrated that wine yeasts undergo changes in promoter regions and variations in gene copy number, which make them different to lab strains and help them better adapt to stressful conditions during winemaking, where oxidative stress plays a critical role. Since cytoplasmic thioredoxin II, a small protein with thiol-disulphide oxidoreductase activity, has been seen to perform important functions under biomass propagation conditions of wine yeasts, we studied the involvement of Trx2p in the molecular regulation of the oxidative stress transcriptional response on these strains. In this study, we analyzed the expression levels of several oxidative stress-related…
The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans.
2004
After screening a Candida albicans genome data base, the product of an open reading frame (IPF 19760/CA2574) with 41% identity to Saccharomyces cerevisiae vacuolar acid trehalase (Ath1p) was identified and named Atc1p. The deduced amino acid sequence shows that Atc1p contains an N-terminal hydrophobic signal peptide and 20 potential sites for N-glycosylation. C. albicans homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two ATC chromosomal alleles. Analysis of these null mutants shows that Atc1p is localized in the cell wall and is required for growth on trehalose as a carbon source. An Atc1p endowed with acid trehalase activity was obtained by …
Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.
2011
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in bothEscherichia coliandSalmonella entericain the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction i…