Search results for "PLASTICITY"

showing 10 items of 765 documents

Pre-imaginal conditioning alters adult sex pheromone response in Drosophila

2018

https://peerj.com/articles/5585/#supplemental-information; International audience; Pheromones are chemical signals that induce innate responses in individuals of the same species that may vary with physiological and developmental state. In Drosophila melanogaster, the most intensively studied pheromone is 11-cis-vaccenyl acetate (cVA), which is synthezised in the male ejaculatory bulb and is transferred to the female during copulation. Among other effects, cVA inhibits male courtship of mated females. We found that male courtship inhibition depends on the amount of cVA and this effect is reduced in male flies derived from eggs covered with low to zero levels of cVA. This effect is not obser…

0301 basic medicinecis-vaccenyl acetatevaccenylacétatemedia_common.quotation_subjectparade sexuelle[SDV]Life Sciences [q-bio]lcsh:MedicineGeneral Biochemistry Genetics and Molecular BiologyCourtshipAndrology03 medical and health sciencespre-imaginal conditioningBiologie animalecourtship inhibition[CHIM]Chemical SciencesDrosophilaCis-vaccenyl acetatemedia_commonAnimal biologyLarvabiologyGeneral Neuroscienceplasticité[SDV.BA]Life Sciences [q-bio]/Animal biologylcsh:RNeurosciences[SDV.BDLR]Life Sciences [q-bio]/Reproductive BiologyGeneral Medicinebiology.organism_classificationcis-vaccenyl acetate;courtship inhibition;plasticity;pre-imaginal conditioninginhibition030104 developmental biologySex pheromoneNeurons and CognitionplasticityPheromoneConditioningdéveloppement préimaginalDrosophila melanogasterGeneral Agricultural and Biological Sciences
researchProduct

Dysregulated Prefrontal Cortex Inhibition in Prepubescent and Adolescent Fragile X Mouse Model

2020

Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes we…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesGABAB receptorBiologyInhibitory postsynaptic potentiallcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceGABA0302 clinical medicineNeurodevelopmental disorderSDG 3 - Good Health and Well-beingmedicinePrefrontal cortexMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchprefrontal cortexGABAA receptormedicine.diseaseelectrophysiologyFMR1Fragile X syndrome030104 developmental biologyplasticityFragile XGABAergic/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Coincident Activation of Glutamate Receptors Enhances GABAA Receptor-Induced Ionic Plasticity of the Intracellular Cl−-Concentration in Dissociated N…

2019

Massive activation of γ-amino butyric acid A (GABAA) receptors during pathophysiological activity induces an increase in the intracellular Cl−-concentration ([Cl−]i), which is sufficient to render GABAergic responses excitatory. However, to what extent physiological levels of GABAergic activity can influence [Cl−]i is not known. Aim of the present study is to reveal whether moderate activation of GABAA receptors mediates functionally relevant [Cl−]i changes and whether these changes can be augmented by coincident glutamatergic activity. To address these questions, we used whole-cell patch-clamp recordings from cultured cortical neurons [at days in vitro (DIV) 6–22] to determine changes in t…

0301 basic medicinedissociated cell cultureKCC2StimulationGABA(A) receptorsreversal potentiallcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergicchemistry.chemical_compound0302 clinical medicinerheobaseReversal potentialionic plasticitylcsh:Neurosciences. Biological psychiatry. NeuropsychiatrymouseOriginal ResearchChemistryGABAA receptorGlutamate receptor030104 developmental biologyMuscimolCellular NeuroscienceBiophysicsExcitatory postsynaptic potentialCl−-homeostasisGABAergic030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex

2020

The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and …

0301 basic medicinedopamine D2 receptorPSA-NCAMPopulationBiologylcsh:RC321-57103 medical and health scienceschemistry.chemical_compoundpiriform cortex0302 clinical medicineDopaminePiriform cortexDopamine receptor D2medicineeducationNeurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatryeducation.field_of_studyGeneral NeuroscienceDopaminergicBrief Research ReportCell biology030104 developmental biologychemistrynervous systemplasticityNeural cell adhesion moleculedopamineNeural development030217 neurology & neurosurgeryNeurosciencemedicine.drug
researchProduct

The stressed cytoskeleton: How actin dynamics can shape stress-related consequences on synaptic plasticity and complex behavior

2015

Stress alters synaptic plasticity but the molecular and cellular mechanisms through which environmental stimuli modulate synaptic function remain to be elucidated. Actin filaments are the major structural component of synapses and their rearrangements by actin-binding proteins (ABPs) are critical for fine-tuning synaptic plasticity. Accumulating evidence suggests that some ABPs are specifically regulated by stress and stress-related effectors such as glucocorticoids and corticotropin releasing hormone. ABPs may thus be central in stress-induced perturbations at the level of synaptic plasticity, leading to impairments in behavioral domains including cognitive performance and social behavior.…

0301 basic medicinegenetic structuresCognitive NeuroscienceBiology03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineNeuroplasticityMetaplasticityAnimalsHumansActin-binding proteinSocial BehaviorCytoskeletonCytoskeletonActinNeuronsNeuronal PlasticitySynaptic scalingCofilinActinsCell biology030104 developmental biologyNeuropsychology and Physiological PsychologySynapsesSynaptic plasticitybiology.proteinNeuroscience030217 neurology & neurosurgeryNeuroscience & Biobehavioral Reviews
researchProduct

Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex.

2016

Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of…

0301 basic medicinegenetic structuresPSA-NCAMta3112lcsh:RC321-571critical period plasticity03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineparvalbumin interneuronsSYNAPTIC PLASTICITYNeuroplasticitymedicinevisual plasticityMONOCULAR DEPRIVATIONlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryREGULATES PLASTICITYOriginal ResearchbiologyMEDIAL PREFRONTAL CORTEXPOLYSIALIC ACID3112 NeurosciencesCELLULAR AND MOLECULAR NEUROSCIENCEfluoxetineLong-term potentiationSciences bio-médicales et agricoles3. Good healthOCULAR DOMINANCE PLASTICITYMonocular deprivation030104 developmental biologyVisual cortexmedicine.anatomical_structureSTRUCTURAL PLASTICITYnervous systemCELL-ADHESION MOLECULESynaptic plasticitybiology.proteinNeural cell adhesion moleculeLONG-TERM POTENTIATIONPsychologyNeuroscience030217 neurology & neurosurgeryParvalbuminNeuroscienceNEUROTROPHIC FACTORFOSB
researchProduct

Endocannabinoid LTD in Accumbal D1 Neurons Mediates Reward-Seeking Behavior

2020

Summary The nucleus accumbens (NAc) plays a key role in drug-related behavior and natural reward learning. Synaptic plasticity in dopamine D1 and D2 receptor medium spiny neurons (MSNs) of the NAc and the endogenous cannabinoid (eCB) system have been implicated in reward seeking. However, the precise molecular and physiological basis of reward-seeking behavior remains unknown. We found that the specific deletion of metabotropic glutamate receptor 5 (mGluR5) in D1-expressing MSNs (D1miRmGluR5 mice) abolishes eCB-mediated long-term depression (LTD) and prevents the expression of drug (cocaine and ethanol), natural reward (saccharin), and brain-stimulation-seeking behavior. In vivo enhancement…

0301 basic medicineglutamate02 engineering and technologyMolecular neuroscienceBiologyNucleus accumbensMGLUR5 receptorsMedium spiny neuronArticleinduced reinstatementBehavioral Neuroscience03 medical and health sciencesDopamineDopamine receptor D2lipasemedicinelong-term depression[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]lcsh:ScienceLong-term depressionrelapseMultidisciplinaryMetabotropic glutamate receptor 5021001 nanoscience & nanotechnologyEndocannabinoid systemin-vivo exposure3. Good healthrats030104 developmental biologynervous systemethanol-seekingplasticitylcsh:Q[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Molecular Neuroscience0210 nano-technologyNeurosciencepsychological phenomena and processesNeurosciencemedicine.drugiScience
researchProduct

Dlk1 dosage regulates hippocampal neurogenesis and cognition

2021

Significance Generation of new neurons occurs normally in the adult brain in two locations: the subventricular zone (SVZ) in the walls of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus. Neurogenesis in the adult hippocampus has been implicated in cognitive functions such as learning, memory, and recovery of stress response. Imprinted genes are highly prevalent in the brain and have adult and developmental important functions. Genetic deletion of the imprinted gene Dlk1 from either parental allele shows that DLK1 is a key mediator of quiescence in adult hippocampal NSCs. Additionally, Dlk1 is exquisitely dosage sensitive in the brain with p…

0301 basic medicinehippocampusHippocampusgene dosageBiologySubgranular zone03 medical and health sciencesMice0302 clinical medicineCognitionNeuroplasticitymedicineAnimalsEpigeneticsImprinting (psychology)AllelesMultidisciplinarybehaviorDentate gyrusNeurogenesisCalcium-Binding Proteinsneurogenesis genomic imprinting behavior gene dosage hippocampus424Biological Sciencesgenomic imprintingneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemGenomic imprintingNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Mechanisms Underlying Memory Consolidation by Adult-Born Neurons During Sleep

2020

The mammalian hippocampus generates new neurons that incorporate into existing neuronal networks throughout the lifespan, which bestows a unique form of cellular plasticity to the memory system. Recently, we found that hippocampal adult-born neurons (ABNs) that were active during learning reactivate during subsequent rapid eye movement (REM) sleep and provided causal evidence that ABN activity during REM sleep is necessary for memory consolidation. Here, we describe the potential underlying mechanisms by highlighting distinct characteristics of ABNs including decoupled firing from local oscillations and ability to undergo profound synaptic remodeling in response to experience. We further di…

0301 basic medicinehippocampusMini Reviewtheta oscillationHippocampusEngramBiologyHippocampal formationOptogeneticslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineFear conditioningoptogeneticslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrysynaptic plasticityNeurogenesismemory consolidation030104 developmental biologyCellular NeuroscienceSynaptic plasticitycalcium-imagingMemory consolidationREM sleepadult-neurogenesisNeuroscience030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Exosome-Mediated Signaling in Epithelial to Mesenchymal Transition and Tumor Progression

2018

Growing evidence points to exosomes as key mediators of cell–cell communication, by transferring their specific cargo (e.g., proteins, lipids, DNA and RNA molecules) from producing to receiving cells. In cancer, the regulation of the exosome-mediated intercellular communication may be reshaped, inducing relevant changes in gene expression of recipient cells in addition to microenvironment alterations. Notably, exosomes may deliver signals able to induce the transdifferentiation process known as Epithelial-to-Mesenchymal Transition (EMT). In this review, we summarize recent findings on the role of exosomes in tumor progression and EMT, highlighting current knowledge on exosome-mediated inter…

0301 basic medicinelcsh:MedicineReviewExosomeMetastasis03 medical and health sciencesepithelial-mesenchymal plasticity; cancer-derived exosomes; extracellular vesicles; metastasis; tumor nicheGene expressionmedicinemetastasisEpithelial–Mesenchymal plasticityEpithelial–mesenchymal transitionbusiness.industrytumor nicheTransdifferentiationlcsh:RRNAGeneral Medicinemedicine.diseasecancer-derived exosomeMicrovesiclesCell biology030104 developmental biologyepithelial-mesenchymal plasticityTumor progressionmetastasiextracellular vesiclebusinesscancer-derived exosomesextracellular vesicles
researchProduct