Search results for "POWER ELECTRONICS"
showing 10 items of 80 documents
Note: Direct sensor resistance-to-frequency conversion with generalized impedance converter.
2010
In this note a squared output signal is generated from an astable circuit. Its frequency has a linear dependence on the resistance value of a resistive temperature sensor. The main circuit to obtain this direct relationship is the generalized impedance converter configured as a capacitor controlled by a sensor resistance. The proposed measurement method allows a direct analog-to-digital interface of information involved in resistive sensors. The converter finds applications in portable low voltage and low power design of instrumentation electronic systems.
A Design Methodology for Low-Power MCML Ring Oscillators
2007
In this paper, a low-power design method for MCML based ring oscillators is presented. The proposed method takes into account the parasitic capacitances of the MOS transistors. To validate it, some ring oscillators with different oscillation frequencies were designed in a 0.18 mum CMOS technology. SPICE simulations demonstrate the effectiveness of the design method.
Optimal energy management in the smart grid
2017
In this chapter, the problem of energy management in smart grids is outlined. Optimized energy management is considered here as the operation of energy and power flow control in the aim of attaining minimum cost or minimum power losses while meeting technical constraints. Of course, according to the type of energy system in which such operation is carried out, the meaningful variables and objectives in the problem may largely change. As the extension of the system increases, the influence of the physical behaviour of the electrical power lines takes a more important role. Power electronics takes instead an increasing influence, as the dimension of the power system decreases although Kirchho…
Comparison between SiC and GaN switching devices in fast-recharging systems for electric vehicles
2023
Recently, the improvement of the semiconductor devices to achieve higher efficiency and higher power density has risen to interest. Si carbide and gallium nitride offer faster switching frequency and lower losses; however, the knowledge of the behaviour of these devices is not mature. In this paper, a system for fast charging of batteries for electric vehicles based on an isolated DC-DC converter equipped with both SiC and GaN devices is presented and an interesting experimental comparison among these two technologies will be given in terms of dynamic performances, electromagnetic compatibility, stability, efficiency, and so on.
A Hybrid Storage Systems for All Electric Aircraft
2021
A hybrid energy storage system specifically designed for a fully electric aircraft is presented in the paper. The analysis of the time evolution of the power demand of the electric propulsion system during a test mission of Maxwell X-57, an all-electric aircraft developed by NASA, has pointed out the presence of significant peak power during take-off and air tack. Considered the issues related to weight and the volume of the energy storage systems (ESSs) in all-electric aircraft, a hybridization of aircraft ESS with a Supercapacitors (SCs) bank, devoted to smooth peak power demand, has been investigated. A comparison between the simulation results of an electrochemical battery and hybrid ES…
Optimal Integration of Hybrid Supercapacitor and IPT system for a Free Catenary Tramway
2017
The aim of the presented paper is the study of an optimal integration of Supercapacitor based storage system and Inductive Power Transfer system for the free-catenary operation of a tramway. The paper starts from the definition of the Inductive Power transfer pad system and proposed an optimal integration strategy for the correct size of on-board supercapacitors and the inductive energy transfer.
Modeling and simulation of a digital control design approach for power supply systems
2006
Electronic designers need to model and simulate system features as close as possible to its effective behaviour. Moreover, today, electronics systems are often composed of mixed analog and digital components. The increasing complexity has led to the use of different simulation softwares, each one specific for a particular level of abstraction: mathematical, circuital, behavioural, etc. In order to simulate the entire system these softwares should work together: co-simulation is necessary for digitally controlled power electronics systems. In this paper, the modeling of a digitally controlled switching power supply system using MATLAB/Simulink, ALDEC Active-HDL and Powersys PSIM is presented…
Implementation on NI-SOM sbRIO-9651 and Experimental Validation of Multi-Carrier PWM Techniques for Three-Phase Five Level Cascaded H-Bridge Inverter
2021
Multilevel Power Inverters (MPIs) represent a valid solution to improve the performances of energy production systems from renewable energy sources. Furthermore, the use of novel FPGA control systems allows simplifying the implementation of multicarrier PWM techniques for MPIs with computational benefits. This paper describes the implementation of several multicarrier PWM techniques on NI-SOM sbRIO-9651 for the control of a three-phase five-level cascaded H-bridge inverter. In detail, sbRIO-9651 is a control system in the field of Power Electronics and Drives (PED) programmable in the LabVIEW graphical programming environment. The paper is focused on modulation techniques implementation, te…
Preamble Sampling MAC Protocol for Low Power Wireless Sensor Networks with IEEE 802.15.4 Transceivers
2006
In this paper a preamble sampling MAC protocol for low power wireless sensor networks is proposed. The article describes the implementation of the protocol using network nodes equipped with the Chipcon CC2420 802.15.4 transceiver. The power consumption of the transceiver has been measured and the MAC protocol has been adapted to the transceiver properties. The results show the trade-off between power consumption and transmission delay for this algorithm during the communication process.
Inductive Power Transfer for 100W battery charging
2013
Today, Inductive Power Transfer (IPT) is widely investigated to provide wireless battery charge. Potential applications range from a few Watts of handheld devices to kWatts of automotive applications. Despite of comfort and safety options, wireless charging features relatively poor power conversion efficiency. In the literature, several solutions are proposed addressing efficiency related issues. In this paper, a 100W wireless charging station for electric bikes which improves the power conversion efficiency is proposed. The magnetic structure design is analyzed thoroughly as well as the proposed power electronics system architectures of both the power transmitter and power receiver. The ef…