Search results for "PROTEIN KINASE"
showing 10 items of 1188 documents
Arrestin-β-1 Physically Scaffolds TSH and IGF1 Receptors to Enable Crosstalk
2019
Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-β-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted…
AMPK phosphorylation modulates pain by activation of NLRP3 inflammasome
2016
et al.
Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy
2019
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease caused by an abnormal (GCN) triplet expansion within the polyadenylate-binding protein nuclear 1 gene and consequent mRNA pr...
p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging.
2017
[Background]: Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. [Methods]: Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. [Results]: We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M…
Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma.
2019
Glioblastoma (GBM) is the most common malignant primary tumor of the central nervous system. With no effective therapy, the prognosis for patients is terrible poor. It is highly heterogeneous and EGFR amplification is its most frequent molecular alteration. In this light, we aimed to examine the genetic heterogeneity of GBM and to correlate it with the clinical characteristics of the patients. For that purpose, we analyzed the status of EGFR and the somatic copy number alterations (CNAs) of a set of tumor suppressor genes and oncogenes. Thus, we found GBMs with high level of EGFR amplification, low level and with no EGFR amplification. Highly amplified tumors showed histological features of…
BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways.
2016
Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system, and is the most common solid tumor of infancy. NBs are very heterogeneous, with a clinical course ranging from spontaneous regression to resistance to all current forms of treatment. High-risk patients need intense chemotherapy, and only 30-40% will be cured. Relapsed or metastatic tumors acquire multi-drug resistance, raising the need for alternative treatments. Owing to the diverse mechanisms that are responsible of NB chemoresistance, we aimed to target epigenetic factors that control multiple pathways to bypass therapy resistance. We found that the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromat…
Imatinib spares cKit-expressing prostate neuroendocrine tumors, whereas kills seminal vesicle epithelial-stromal tumors by targeting PDGFR-β
2017
Abstract Prostate cancer is a leading cause of cancer-related death in males worldwide. Indeed, advanced and metastatic disease characterized by androgen resistance and often associated with neuroendocrine (NE) differentiation remains incurable. Using the spontaneous prostate cancer TRAMP model, we have shown that mast cells (MCs) support in vivo the growth of prostate adenocarcinoma, whereas their genetic or pharmacologic targeting favors prostate NE cancer arousal. Aiming at simultaneously targeting prostate NE tumor cells and MCs, both expressing the cKit tyrosine kinase receptor, we have tested the therapeutic effect of imatinib in TRAMP mice. Imatinib-treated TRAMP mice experience a pa…
LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis
2016
International audience; Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN …
The significance of epidermal growth factor receptor uncommon mutations in non-small cell lung cancer: A systematic review and critical appraisal
2020
Uncommon epidermal growth factor receptor (EGFR) mutations collectively account for 10% of EGFR mutations, harboring heterogeneous molecular alterations within exons 18-21 with clinically variable responses to EGFR tyrosine kinase inhibitors (TKIs) in advanced Non-Small Cell Lung Cancer (NSCLC) patients. In addition, with the introduction of different NGS gene approach an improvement of EGFR mutations detection was reported. Today, no specific studies have prospectively evaluated uncommon sensitizing mutations in detail and no firm standard of care has been established in the first-line setting. The aim of this comprehensive review is to critically consider the clinical role of uncommon EGF…
Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dose-dependent manner: implications for inotropy.
2019
Abstract Aims Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. Methods and results Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxi…