Search results for "Parallel"
showing 10 items of 667 documents
"Table 24" of "Studies of quantum chromodynamics with the ALEPH detector"
1997
Unfolded values of the the mean multiplicity and dispersion of the multiplicity distribution integrated over the full rapidity region.
"Table 6" of "Inclusive production of neutral vector mesons in hadronic Z decays"
1995
Average multiplicity per hadronic event. Extrapolation to the full X range.
Bis(pentamethylcyclopentadienyl)-Substituted Phosphanes: Synthesis and Structure
1998
The bis(1,2,3,4,5-pentamethyl-1,3-cyclopentadien-1-yl)phosphanes 3−7 are formed in good yields by the reaction of the halogenophosphanes 2a or 2b with the appropriate nucleophile. Following another route, the dialkylaminobis(pentamethylcyclopentadienyl)phosphanes 11a−c have been synthesized by the treatment of dichloro(dialkylamino)phosphanes with two equivalents of (pentamethylcyclopentadienyl)lithium. The compounds 3−11 have been characterized by multinuclear NMR spectroscopy and 3, 5, 6, and 11a have also been characterized by single-crystal X-ray diffraction studies. The molecular structure of 11a is governed by steric congestion, which typically would lead to a parallel arrangement of …
A robust forward-displacement analysis of spherical parallel robots
2009
The forward-displacement analysis of spherical parallel robots (SPRs) is revisited. A robust approach, based on the input–output (I/O) equation of spherical four-bar linkages, is proposed. In this approach, the closed-loop kinematic chain of a SPR is partitioned into two four-bar spherical chains, whose I/O equations are at the core of the analysis reported here. These equations lead to a trigonometric equation in the joint angles, which is solved semigraphically to obtain the joint variables for the determination of the moving plate orientation. Examples are included to demonstrate the application of the method.
Architectural improvements and FPGA implementation of a multimodel neuroprocessor
2003
Since neural networks (NNs) require an enormous amount of learning time, various kinds of dedicated parallel computers have been developed. In the paper a 2-D systolic array (SA) of dedicated processing elements (PEs) also called systolic cells (SCs) is presented as the heart of a multimodel neural-network accelerator. The instruction set of the SA allows the implementation of several neural algorithms, including error back propagation and a self organizing feature map algorithm. Several special architectural facilities are presented in the paper in order to improve the 2-D SA performance. A swapping mechanism of the weight matrix allows the implementation of NNs larger than 2-D SA. A systo…
LightSpMV: Faster CSR-based sparse matrix-vector multiplication on CUDA-enabled GPUs
2015
Compressed sparse row (CSR) is a frequently used format for sparse matrix storage. However, the state-of-the-art CSR-based sparse matrix-vector multiplication (SpMV) implementations on CUDA-enabled GPUs do not exhibit very high efficiency. This has motivated the development of some alternative storage formats for GPU computing. Unfortunately, these alternatives are incompatible with most CPU-centric programs and require dynamic conversion from CSR at runtime, thus incurring significant computational and storage overheads. We present LightSpMV, a novel CUDA-compatible SpMV algorithm using the standard CSR format, which achieves high speed by benefiting from the fine-grained dynamic distribut…
Bit-Parallel Approximate Pattern Matching on the Xeon Phi Coprocessor
2014
Bit-parallel pattern matching encodes calculated values in bit arrays. This approach gains its efficiency by performing multiple updates within a machine word. An important parameter is therefore the machine word size (e.g. 32 or 64 bits). With the increasing length of vector registers, the efficient mapping of bit-parallel pattern matching algorithms onto modern high performance computing architectures is becoming increasingly important. In this paper, we investigate an efficient implementation of the Wu-Manber approximate pattern matching algorithm on the Intel Xeon Phi coprocessor. This architecture features a 512-bit long vector processing unit (VPU) as well as a large number of process…
SWAPHI-LS: Smith-Waterman Algorithm on Xeon Phi coprocessors for Long DNA Sequences
2014
As an optimal method for sequence alignment, the Smith-Waterman (SW) algorithm is widely used. Unfortunately, this algorithm is computationally demanding, especially for long sequences. This has motivated the investigation of its acceleration on a variety of high-performance computing platforms. However, most work in the literature is only suitable for short sequences. In this paper, we present SWAPHI-LS, the first parallel SW algorithm exploiting emerging Xeon Phi coprocessors to accelerate the alignment of long DNA sequences. In SWAPHI-LS, we have investigated three parallelization approaches (naive, tiled, and distributed) in order to deeply explore the inherent parallelism within Xeon P…
Exploiting selective instruction reuse and value prediction in a superscalar architecture
2009
In our previously published research we discovered some very difficult to predict branches, called unbiased branches. Since the overall performance of modern processors is seriously affected by misprediction recovery, especially these difficult branches represent a source of important performance penalties. Our statistics show that about 28% of branches are dependent on critical Load instructions. Moreover, 5.61% of branches are unbiased and depend on critical Loads, too. In the same way, about 21% of branches depend on MUL/DIV instructions whereas 3.76% are unbiased and depend on MUL/DIV instructions. These dependences involve high-penalty mispredictions becoming serious performance obstac…
Conclusion: Transnational Histories of the ‘Royal Nation’
2017
The Conclusion summarily analyses the ‘Royal Nation’ as an autonomous historical category. It draws on arguments presented in different chapters of the book, and brings out commonalities between the viewpoints of the authors of these chapters, to demonstrate as to why the interdependence between monarchies and nation-state formation gathered momentous practical significance as well as conceptual plausibility in different parts of the modern world, from the nineteenth century onwards. The Conclusion emphasizes the intellectual, aesthetic and performative, juridical, social, and political underpinnings of this interdependency; it suggests that this mutual imbrication of the royal and the nati…