Search results for "Pareto-tehokkuus"
showing 10 items of 23 documents
Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies
2018
We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization as there is no reason to assume that all objective functions should take an equal amount of time to be evaluated (particularly when objectives are evaluated separately). To cope with such problems, we propose a variation of the Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) called heterogeneous K-RVEA (short HK-RVEA). This algorithm is a merger of two main concepts designed to account for different latencies: A single-objective evolutionary a…
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
2018
We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distr…
Flexible Data Driven Inventory Management with Interactive Multiobjective Lot Size Optimization
2021
We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. We forecast demand with a Bayesian model, which is based on sales data. After identifying relevant objectives relying on the demand model, we formulate an optimisation problem to determine lot sizes for multiple future time periods. Our approach combines different interactive multi-objective optimisation methods for finding the best balance among the objectives. For that, a decision maker with substance knowledge directs the solution process with one’s preference inform…
On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization
2019
Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
2019
We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…
Handling expensive multiobjective optimization problems with evolutionary algorithms
2017
Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations or costly experiments), which pose an extra challenge in solving them. In this thesis, we first present a survey of different methods proposed in the literature to handle MOPs with expensive evaluations. We observed that most of the existing methods cannot be easily applied to problems with more than three objectives. Therefore, we propose a Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for problems with at least three expensive objectives. The alg…
Probabilistic Selection Approaches in Decomposition-based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization
2022
In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this paper, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-base…
Approximation method for computationally expensive nonconvex multiobjective optimization problems
2012
On solving computationally expensive multiobjective optimization problems with interactive methods
2014
A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem
2017
A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed