Search results for "Path integral formulation"
showing 10 items of 60 documents
Lattice QCD: A Brief Introduction
2014
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
Examples for Calculating Path Integrals
2001
We now want to compute the kernel K(b, a) for a few simple Lagrangians. We have already found for the one-dimensional case that $$\displaystyle{ K{\bigl (x_{2},t_{2};x_{1},t_{1}\bigr )} =\int _{ x(t_{1})=x_{1}}^{x(t_{2})=x_{2} }[dx(t)]\,\text{e}^{(\mathrm{i}/\hslash )S} }$$ (19.1) with $$\displaystyle{ S =\int _{ t_{1}}^{t_{2} }dt\,L(x,\dot{x};t)\;. }$$ First we consider a free particle, $$\displaystyle{ L = m\dot{x}^{2}/2\;, }$$ (19.2) and represent an arbitrary path in the form, $$\displaystyle{ x(t) =\bar{ x}(t) + y(t)\;. }$$ (19.3) Here, \(\bar{x}(t)\) is the actual classical path, i.e., solution to the Euler–Lagrange equation: $$\displaystyle{ \frac{\partial L} {\partial x}\Big\vert _{…
Mean field methods in large amplitude nuclear collective motion
1984
The time dependent Hartree-Fock method (TDHF) is reviewed and its success and failure are discussed. It is demonstrated that TDHF is a semiclassical theory which is basically able to describe the time evolution of one-body operators, the energy loss in inclusive deep inelastic collisions, and fusion reactions above the Coulomb barrier. For genuine quantum mechanical processes as e.g. spontaneous fission, subbarrier fusion, phase shifts and the description of bound vibrations, the quantized adiabatic time dependent Hartree-Fock theory (quantized ATDHF) is suggested and reviewed. Realistic three-dimensional calculations for heavy ion systems of A1+A2<32 are presented. Applications to various …
Erratum to: Classical and Quantum Dynamics: From Classical Paths to Path Integrals
2017
Propagators for Particles in an External Magnetic Field
2001
In order to describe the propagation of a scalar particle in an external potential, we begin again with the path integral $$ K(r',t';r,0) = \int_{r,(0)}^{r',(t')} {[dr(t)]} \exp \left\{ {\frac{{\text{i}}} {\hbar }S[r(t)]} \right\} $$ (1) with $$ S[r(t)] = \int_0^{t'} {dt} L(r,\dot r). $$
Quantum Spin-Tunneling:A Path Integral Approach
1995
We investigate the quantum tunneling of a large spin in a crystal field and an external magnetic field. The twofold degeneracy of the corresponding classical ground state is removed due to tunneling. The tunnel splitting ΔE o of the ground state is calculated by use of a path integral formalism. It is shown that coherent spin state path integrals do not yield a reasonable result. However a “bosonlzation” of the spin system yields excellent results in the semiclassical limit. This result follows from the coherent spin state approach from replacing the spin quantum number s by s + 1/2 which causes a renormalization of the preexponential factor of ΔE o .
Note on the super-extended Moyal formalism and its BBGKY hierarchy
2017
We consider the path integral associated to the Moyal formalism for quantum mechanics extended to contain higher differential forms by means of Grassmann odd fields. After revisiting some properties of the functional integral associated to the (super-extended) Moyal formalism, we give a convenient functional derivation of the BBGKY hierarchy in this framework. In this case the distribution functions depend also on the Grassmann odd fields.
Magnetoelectric effects in superconductors due to spin-orbit scattering : Nonlinear σ-model description
2021
We suggest a generalization of the nonlinear σ model for diffusive superconducting systems to account for magnetoelectric effects due to spin-orbit scattering. In the leading orders of spin-orbit strength and gradient expansion, it includes two additional terms responsible for the spin-Hall effect and the spin-current swapping. First, assuming a delta-correlated disorder, we derive the terms from the Keldysh path integral representation of the generating functional. Then we argue phenomenologically that they exhaust all invariants allowed in the effective action to the leading order in the spin-orbit coupling (SOC). Finally, the results are confirmed by a direct derivation of the saddle-poi…
Path Integral Formulation of Quantum Electrodynamics
2020
Let us consider a pure Abelian gauge theory given by the Lagrangian $$\displaystyle\begin{array}{rcl} \mathcal{L}_{\text{photon}}& =& -\frac{1} {4}F_{\mu \nu }F^{\mu \nu } \\ & =& -\frac{1} {4}\left (\partial _{\mu }A_{\nu } - \partial _{\nu }A_{\mu }\right )\left (\partial ^{\mu }A^{\nu } - \partial ^{\nu }A^{\mu }\right ){}\end{array}$$ (36.1) or, after integration by parts, $$\displaystyle\begin{array}{rcl} \mathcal{L}_{\text{photon}}& =& -\frac{1} {2}\left [-\left (\partial _{\mu }\partial ^{\mu }A_{\nu }\right )A^{\nu } + \left (\partial ^{\mu }\partial ^{\nu }A_{\mu }\right )A_{\nu }\right ] \\ & =& \frac{1} {2}A_{\mu }\left [g^{\mu \nu }\square - \partial ^{\mu }\partial ^{\nu }\righ…
Quantitative approximation of certain stochastic integrals
2002
We approximate certain stochastic integrals, typically appearing in Stochastic Finance, by stochastic integrals over integrands, which are path-wise constant within deterministic, but not necessarily equidistant, time intervals. We ask for rates of convergence if the approximation error is considered in L 2 . In particular, we show that by using non-equidistant time nets, in contrast to equidistant time nets, approximation rates can be improved considerably.