Search results for "Pathway analysis"
showing 3 items of 13 documents
Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways
2015
G.B. and S.N. acknowledge funding support for this work from the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. P.H.L. is supported by US National Institute of Mental Health (NIMH) grant K99MH101367. Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an an…
Residential greenness-related DNA methylation changes
2021
Abstract Background Residential greenness has been associated with health benefits, but its biological mechanism is largely unknown. Investigation of greenness-related DNA methylation profiles can contribute to mechanistic understanding of the health benefits of residential greenness. Objective To identify DNA methylation profiles associated with greenness in the immediate surroundings of the residence. Methods We analyzed genome-wide DNA methylation in 1938 blood samples (982 participants) from the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We estimated residential greenness based on normalized difference vegetation index at 30 × 30 m cell (green3…
Pathway analysis of high-throughput biological data within a Bayesian network framework
2011
Abstract Motivation: Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Results: Proposed method takes into account the connectivity and relatedness between nodes of the p…