Search results for "Pentane"

showing 10 items of 174 documents

Vinylcyclopropane [3+2] Cycloaddition with Acetylenic Sulfones Based on Visible Light Photocatalysis

2021

We describe the first intermolecular visible light [3+2] cycloaddition reaction being performed on a meta photocycloadduct employing acetylenic sulfones. The developed methodology exploits the advantages of combining UV and Visible light in a two-step sequence that provides a photogenerated cyclopropane which, through a strain-release process, generates a new cyclopentane ring while increasing significally the molecular complexity. This strategy could be extended to simpler vinylcyclopropanes.

Molecular complexitychemistry.chemical_compoundMaterials sciencechemistryIntermolecular forcePhotocatalysisRing (chemistry)PhotochemistryCyclopentaneCycloadditionCyclopropaneVisible spectrum
researchProduct

Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen int…

2013

Plant cell wall modification is a critical component in stress responses. Endo-1,4-β-glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence-signalling network. A study of a set of Arabidopsis EG T-DNA insert…

Mutantendo-glucanasesArabidopsisGene ExpressionPseudomonas syringaePlant ScienceCyclopentanestomatoGenes PlantMarker genechemistry.chemical_compoundBotrytis cinereaCellulaseSolanum lycopersicumPlant Growth RegulatorsCell WallGene Expression Regulation PlantArabidopsisBotanyPseudomonas syringaeArabidopsis thalianaOxylipinsGlucansEcology Evolution Behavior and SystematicsBotrytis cinereaDisease ResistancePlant DiseasesPlant ProteinsbiologyJasmonic acidCallosefungifood and beveragesGeneral Medicinebiology.organism_classificationdefence responseCell biologychemistryHost-Pathogen Interactionscell wallBotrytisSignal TransductionPlant biology (Stuttgart, Germany)
researchProduct

A β-1,3 Glucan Sulfate Induces Resistance in Grapevine against Plasmopara viticola Through Priming of Defense Responses, Including HR-like Cell Death

2008

Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybri…

OLIGOSACCHARIDESpores0106 biological sciencesPhysiologyDEFENSE REACTIONSCyclopentanesGenes Plant01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyTobacco mosaic virusPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyVitisOxylipinsGlucansPlant Diseases030304 developmental biology0303 health sciencesCell DeathbiologyPOTENTIALISATIONINDUCED RESISTANCEJasmonic acidCallosefood and beveragesTobamovirusHydrogen PeroxideGeneral Medicinebiology.organism_classificationImmunity InnateUp-RegulationElicitorPlant LeavesOomyceteschemistryPlasmopara viticolaPlant StomataDowny mildewAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions®
researchProduct

Monitoring of headspace volatiles in milk‐cereal‐based liquid infant foods during storage

2006

The effect of storage (time and temperature) on the evolution of pentanal, hexanal, heptanal and pentane as volatile lipid oxidation products in two liquid ready-to-eat milk-cereal-based infant foods was studied. An SPME-GC method was used to this effect. Samples were stored for 9 months at 25, 30 and 37 °C and tested eight times during this period. Freshly produced infant foods contained pentanal, hexanal and heptanal (mean values: 10.71, 71.5 and 1.2 μg/kg, respectively), which decreased during the first 3 months of storage, although from the fourth month onwards no significant differences among storage times were found. Aldehyde content was inversely proportional to storage temperature. …

PentanalFood preservationGeneral ChemistryHexanalIndustrial and Manufacturing EngineeringWarehouseHeptanalPentanechemistry.chemical_compoundchemistryLipid oxidationFood scienceFood ScienceBiotechnologyEuropean Journal of Lipid Science and Technology
researchProduct

(Dimethylformamide)dioxobis(pentane-2,4-dionato)uranium(VI)

2007

The title complex, [UO2(C5H7O2)2(C3H7NO)], was obtained as an unexpected product from our attempts to prepare UIV complexes with imine-type ligands. The title complex was also prepared directly from [UO2(OAc)2]·2H2O, pentane-2,4-dione and DMF. The UVI atom has a penta­gonal-bipyramidal geometry and is surrounded by seven O atoms. The bond distances and angles are similar to those found previously in similar structures.

Pentanechemistry.chemical_compoundchemistryAtomchemistry.chemical_elementDimethylformamideGeneral Materials ScienceGeneral ChemistryUraniumCondensed Matter PhysicsMedicinal chemistryActa Crystallographica Section E Structure Reports Online
researchProduct

Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins.

2012

We analyze, for the first time, the early signal transduction pathways triggered by methyl jasmonate (MJ) and cyclodextrins (CDs) in tobacco (Nicotiana tabacum) cell cultures, paying particular attention to changes in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), the production of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), and late events like the induction of capsidiol. Our data indicate that MJ and CDs trigger a [Ca(2+)](cyt) rise promoted by Ca(2+) influx through Ca(2+)-permeable channels. The joint presence of MJ and CDs provokes a first increase in [Ca(2+)](cyt) similar to that observed in MJ-treated cells, followed by a second peak similar to that found in the presence…

PhysiologyNicotiana tabacum[SDV]Life Sciences [q-bio]nicotiana tabacumPlant ScienceCyclopentanesAcetatesNitric OxideCapsidiolchemistry.chemical_compoundCytosolOnium CompoundsPlant CellsTobaccoGeneticsProtein phosphorylationOxylipinsPhosphorylationCells CulturedRespiratory BurstCyclodextrinsMethyl jasmonatebiologyMolecular StructureHydrogen Peroxidemethyl jasmonatebiology.organism_classificationcell culturesRespiratory burstCulture MediaCytosolEGTABiochemistrychemistry[SDE]Environmental SciencesBiophysicsPhosphorylationCalciumSesquiterpenesSignal TransductionPlant physiology and biochemistry : PPB
researchProduct

Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms Du…

2015

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) genera…

Physiology[SDV]Life Sciences [q-bio]Defence mechanismsVeraisonCell WallGene Expression Regulation PlantGene Expression Regulation FungalStilbenesPlant defense against herbivoryVitisPathogenComputingMilieux_MISCELLANEOUSDisease ResistanceOligonucleotide Array Sequence AnalysisBotrytis cinerea2. Zero hungerchemistry.chemical_classificationVirulencebiologyReverse Transcriptase Polymerase Chain ReactionPhytoalexinGene Expression Regulation Developmentalfood and beveragesGeneral MedicineSalicylatesPlant disease[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyHost-Pathogen Interactions[SDE]Environmental SciencesBotrytisSesquiterpenesPlant DiseaseVirulenceCyclopentanesMicrobiologyPhytoalexinsBotany[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyOxylipinsPlant DiseasesPhytopathologyGene Expression Profilingfungibiology.organism_classificationGene OntologychemistryResveratrolFruitReactive Oxygen SpeciesAgronomy and Crop Science[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation

2004

Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid…

Phytophthora0106 biological sciences[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringCyclopentanesPlasma protein bindingBiologyFatty Acid-Binding ProteinsLigands01 natural sciencesMass SpectrometryFatty acid-binding proteinCell membrane03 medical and health scienceschemistry.chemical_compoundTobacco[SDV.IDA]Life Sciences [q-bio]/Food engineeringExtracellularmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringOxylipinsMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesDose-Response Relationship DrugCircular DichroismJasmonic acidCell MembraneFatty AcidsElicitinBiological activityArticlesCell Biology[SDV.IDA] Life Sciences [q-bio]/Food engineeringLipid MetabolismLipidsRecombinant Proteinsmedicine.anatomical_structureBiochemistrychemistryPHYTOPHTORA PARASITICACarrier ProteinsTRANSFERT LIPIDIQUEPlant lipid transfer proteinsChromatography LiquidProtein Binding010606 plant biology & botanyMolecular Biology of the Cell
researchProduct

Isobaric Vapor−Liquid Equilibria for the Binary System 3-Methylpentane + 2-Methyl-2-propanol and for the Ternary System Methyl 1,1-Dimethylethyl Ethe…

1999

Isobaric vapor−liquid equilibria data were obtained for the 3-methylpentane + 2-methyl-2-propanol binary system and methyl 1,1-dimethylethyl ether + 3-methylpentane + 2-methyl-2-propanol ternary system at 101.3 kPa in a temperature range from 329 to 356 K. The data were found to be thermodynamically consistent according to the Van Ness−Byer−Gibbs method for the binary system and according to the McDermott−Ellis method for the ternary one. The binary system shows a minimum boiling azeotrope that boils at 333.4 K and contains 82.6 mol % of 3-methylpentane. The binary interaction parameters obtained from this work and literature data are used to predict the vapor−liquid equilibrium for the ter…

Propanolchemistry.chemical_compoundUNIQUACTernary numeral systemchemistryGeneral Chemical EngineeringAzeotropeNon-random two-liquid modelThermodynamicsGeneral ChemistryBinary systemTernary operation3-MethylpentaneJournal of Chemical & Engineering Data
researchProduct

Towards the determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors

2014

Selected volatile organic compounds (VOCs) in breath may be considered biomarkers if they are indicative of distinct diseases or disease states. Given the inherent molecular selectivity of vibrational spectroscopy, infrared sensing technologies appear ideally suitable for the determination of endogenous VOCs in breath. The aim of this study was to determine that mid-infrared (MIR; 3-20 µm) gas phase sensing is capable of determining isoprene in exhaled breath as an exemplary medically relevant VOC by hyphenating novel substrate-integrated hollow waveguides (iHWG) with a likewise miniaturized preconcentration system. A compact preconcentrator column for sampling isoprene from exhaled breath …

Pulmonary and Respiratory MedicineDetection limitTime FactorsInfrared RaysTemperatureAnalytical chemistryInfrared spectroscopySignal Processing Computer-AssistedBiosensing TechniquesSubstrate (electronics)Reference StandardsHollow waveguidechemistry.chemical_compoundHemiterpenesBreath TestsBreath gas analysischemistryPentanesTemporal resolutionCalibrationButadienesCalibrationHumansIsopreneJournal of Breath Research
researchProduct