Search results for "Pettis Integral"
showing 10 items of 43 documents
On weakly measurable stochastic processes and absolutely summing operators
2006
A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered
Radon–Nikodým Theorems for Finitely Additive Multimeasures
2015
In this paper we deal with interval multimeasures. We show some Radon–Nikodým theorems for such multimeasures using multivalued Henstock or Henstock–Kurzweil–Pettis derivatives. We do not use the separability assumption in the results.
Relations among Gauge and Pettis integrals for cwk(X)-valued multifunctions
2019
The aim of this paper is to study relationships among "gauge integrals" (Henstock, Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general Banach space, not necessarily separable. For this purpose we prove the existence of variationally Henstock integrable selections for variationally Henstock integrable multifunctions. Using this and other known results concerning the existence of selections integrable in the same sense as the corresponding multifunctions, we obtain three decomposition theorems. As applications of such decompositions, we deduce characterizations of Henstock and ${\mathcal H}$ integrable multifunctions, toget…
Kurzweil-Henstock type integration on Banach spaces
2004
In this paper properties of Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrals for vector-valued functions are studied. In particular, the absolute integrability for Kurzweil-Henstock integrable functions is characterized and a Kurzweil-Henstock version of the Vitali Theorem for Pettis integrable functions is given.
Strongly measurable Kurzweil-Henstock type integrable functions and series
2008
We give necessary and sufficient conditions for the scalar Kurzweil-Henstock integrability and the Kurzweil-Henstock-Pettis integrability of functions $f:[1, infty) ightarrow X$ defined as $f=sum_{n=1}^infty x_n chi_{[n,n+1)}$. Also the variational Henstock integrability is considered
Some new results on integration for multifunction
2018
It has been proven in previous papers that each Henstock-Kurzweil-Pettis integrable multifunction with weakly compact values can be represented as a sum of one of its selections and a Pettis integrable multifunction. We prove here that if the initial multifunction is also Bochner measurable and has absolutely continuous variational measure of its integral, then it is a sum of a strongly measurable selection and of a variationally Henstock integrable multifunction that is also Birkhoff integrable.
A variational henstock integral characterization of the radon-nikodým property
2009
A characterization of Banach spaces possessing the Radon-Nikodym property is given in terms of finitely additive interval functions. We prove that a Banach space X has the RNP if and only if each X-valued finitely additive interval function possessing absolutely continuous variational measure is a variational Henstock integral of an X-valued function. Due to that characterization several X-valued set functions that are only finitely additive can be represented as integrals.
MR3093276 Reviewed Naralenkov, K. M. On continuity and compactness of some vector-valued integrals. Rocky Mountain J. Math. 43 (2013), no. 3, 1015–10…
2014
ZBL MS 63/6 Satco, Bianca-Renata; Turcu, Corneliu-Octavian Henstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on t…
2013
The authors prove an existence result for a nonlinear integral equation on time scales under weak topology assumption in the target Banach space. In the setting of vector valued functions on time scales they consider the Henstock-Kurzweil-Pettis $\Delta$-integral which is a kind of Henstock integral recently introduced by Cichon, M. [Commun. Math. Anal. 11 (2011), no. 1, 94�110]. In this framework they show the existence of weakly continuous solutions for an integral equation x(t)= f(t, x(t))+ (HKP)\int_0^t g(t,s,x(s)) \Delta s governed by the sum of two operators: a continuous operator and an integral one. The main tool to get the solutions is a generalization of Krasnosel'skii fixed point…
Decomposability in the space of HKP-integrable functions
2014
In this paper we introduce the notion of decomposability in the space of Henstock-Kurzweil-Pettis integrable (for short HKP-integrable) functions. We show representations theorems for decomposable sets of HKP-integrable or Henstock integrable functions, in terms of the family of selections of suitable multifunctions.