Search results for "Phene"

showing 10 items of 863 documents

Poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films for advanced performance transistors

2005

Solution processed Langmuir-Scha ̈fer and cast thin films of regioregular poly(2,5-dioctyloxy-1,4- phenylene-alt-2,5-thienylene) are investigated as transistor active layers. The study of their field-effect properties evidences that no transistor behavior can be seen with a cast film channel material. This was not surprising considering the twisted conformation of the polymer backbone predicted by various theoretical studies. Strikingly, the Langmuir-Scha ̈fer (LS) thin films exhibit a field-effect mobility of 5 × 10-4 cm2/V‚s, the highest attained so far with an alkoxy-substituted conjugated polymer. Extensive optical, morphological, and structural thin-film characterization supports the a…

LangmuirMaterials sciencePHENYLENEGeneral Chemical EngineeringNanotechnologylaw.inventionlawPhenyleneSTILLE COUPLING REACTIONMaterials ChemistryThin filmConductive polymerbusiness.industryREGIOREGULAR POLY(3-HEXYLTHIOPHENE)TransistorGeneral ChemistryOPTICAL-PROPERTIESSolution processedBLODGETT-FILMSCONDUCTING POLYMERSOptoelectronicsField-effect transistorPOLYTHIOPHENESFIELD-EFFECT TRANSISTORSREPEAT UNITSbusinessCONJUGATED POLYMERS
researchProduct

Immunochemical method for penthiopyrad detection through thermodynamic and kinetic characterization of monoclonal antibodies.

2021

Immunoassays are nowadays being employed for rapid contaminant analysis in clinical, environmental, and agrochemical samples. A thorough characterization of the antibody‒antigen interaction can bring light to the immunoreagent selection process in order to develop sensitive and robust tests. Thus, determination of equilibrium and reaction rate constants is usually recommendable. However, this can be quite tricky for low molecular weight compounds, and competitive strategies are commonly followed to estimate apparent affinity values. In the present study, a collection of monoclonal antibodies to penthiopyrad was raised for the first time, and apparent equilibrium constants were assessed by t…

Langmuirmedicine.drug_classEnzyme-Linked Immunosorbent Assay02 engineering and technologyThiophenesMonoclonal antibody01 natural sciencesAnalytical ChemistryTandem Mass SpectrometrySurface plasmon resonancemedicineSurface plasmon resonanceEquilibrium constantWineDetection limitChromatographymedicine.diagnostic_testChemistry010401 analytical chemistryAntibodies MonoclonalKD valueSurface Plasmon Resonance021001 nanoscience & nanotechnology0104 chemical sciencesCompetitive ELISAHaptenLangmuirImmunoassayEquilibrium constantPyrazolesThermodynamics0210 nano-technologyHaptenChromatography LiquidTalanta
researchProduct

Anomální Ramanovy módy v teluridech

2021

[EN] Two anomalous broad bands are usually found in the Raman spectrum of bulk and 2D Te-based chalcogenides, which include binary compounds, like ZnTe, CdTe, HgTe, GaTe, GeTe, SnTe, PbTe, GeTe2, As2Te3, Sb2Te3, Bi2Te3, NiTe2, IrTe2, and TiTe2, as well as ternary compounds, like GaGeTe, SnSb2Te4, SnBi2Te4, and GeSb2Te5. Many different explanations have been proposed in the literature for the origin of the anomalous broad bands in tellurides, usually located between 119 and 145 cm(-1). They have been attributed to the intrinsic Raman modes of the sample, to oxidation of the sample, to the folding of Brillouin-edge modes onto the zone center, to the existence of a double resonance, like that …

Lattice-DynamicsMaterials sciencetrigonal SeFOS: Physical sciencesGalliumTelluride Trigonal Se02 engineering and technology010402 general chemistry01 natural scienceslaw.inventiontelurScatteringsymbols.namesakelawSpectrumMaterials ChemistryPressureLaser power scalingTeFilmsCondensed Matter - Materials ScienceCondensed matter physicstlakGraphenemřížková dynamikaspektrumResonanceMaterials Science (cond-mat.mtrl-sci)General Chemistryfonony021001 nanoscience & nanotechnologygallium tellurideCadmium telluride photovoltaics0104 chemical sciencesCharacterization (materials science)Condensed Matter - Other Condensed Matterselen s trigonální mřížkouFISICA APLICADAsymbolsPhononstloušťka0210 nano-technologyTernary operationRaman spectroscopyThicknessRaman scatteringOther Condensed Matter (cond-mat.other)
researchProduct

Nanostructured lead-acid negative electrode with reduced graphene oxide

2021

Aim of this work is to develop a new nano-structured and nano-composite lead acid negative electrode with reduced graphene oxide (rGO). Nanostructured electrodes are fabricated by template electrodeposition of lead nanowires on a lead current collector. A polycarbonate track-etched membrane was used as a template (200 nm mean pores diameter). rGO was deposited on the nanostructured electrode from a graphene oxide (GO) dispersion in acetate buffer solution (ABS) (0.2 g/L). Potentiostatic deposition of rGO at -0.8 V vs. standard calomel electrode (SCE) was performed. Electrode with rGO was tested as negative electrode in cell with 5M sulfuric acid solution, a commercial pasted positive plate,…

Lead-acid batteriesNegative electrodeReduced graphene-oxideSettore ING-IND/23 - Chimica Fisica ApplicataHigh C-rateTemplate electrodepositionNanostructures
researchProduct

Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics

2019

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can b…

LetterChemistry(all)geometrical controlFOS: Physical sciencesBioengineeringRELAXATIONApplied Physics (physics.app-ph)02 engineering and technologySpin current7. Clean energyelectrical and spin resistanceMaterials Science(all)National Graphene InstituteOn demandMesoscale and Nanoscale Physics (cond-mat.mes-hall)LOGICGeneral Materials ScienceElectronicsPhysicsspintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsbusiness.industryMechanical EngineeringMEMORYnon-local spin valvesPhysics - Applied PhysicsGeneral ChemistrySpintronicsDissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsTRANSPORTROOM-TEMPERATURENanoelectronicsnonlocal spin valvesMETALResearchInstitutes_Networks_Beacons/national_graphene_institutecurved nanoarchitectures; electrical and spin resistance; geometrical control; nonlocal spin valves; SpintronicsOptoelectronicscurved nanoarchitecturesINJECTION0210 nano-technologybusinessEfficient energy useNano Letters
researchProduct

Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer

2019

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisor…

LetterMaterials scienceGrapheneOxidechemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundElectron transferchemistryQuantum dotlawChemisorptionSurface modificationGeneral Materials SciencePhysical and Theoretical Chemistry0210 nano-technologyMesoporous materialCarbonThe Journal of Physical Chemistry Letters
researchProduct

Staphylococcal alpha-toxin provokes neutrophil-dependent cardiac dysfunction: role of ICAM-1 and cys-leukotrienes.

2002

The role of polymorphonuclear neutrophils (PMN) in septic myocardial dysfunction is presently unknown. Staphylococcus aureus infections are frequently associated with septic sequelae. Therefore, we perfused isolated rat hearts with low doses of α-toxin, the major staphylococcal exotoxin, followed by application of human PMN, N-formyl-methionyl-leucyl-phenylalanine, and arachidonic acid. In contrast to sham-perfused hearts (no α-toxin), a rise in coronary perfusion pressure (CPP) and a reduction of contractile function were noted, and cardiac expression of intercellular adhesion molecule (ICAM)-1 was detected by immunohistochemical methods and real-time PCR. Histological analysis and myelope…

LeukotrienesHeart diseasePhysiologyNeutrophilsNeutrophileBacterial ToxinsExotoxinsThiophenesIn Vitro Techniquesmedicine.disease_causePathogenesisHemolysin ProteinsPhysiology (medical)medicineAnimalsHumansICAM-1Arachidonic AcidToxinbusiness.industryMyocardiumHydrazonesHeartmedicine.diseaseIntercellular Adhesion Molecule-1RatsN-Formylmethionine Leucyl-PhenylalaninePerfusionStaphylococcus aureusImmunologyCirculatory systemCardiology and Cardiovascular MedicinebusinessOligonucleotide ProbesExotoxinAmerican journal of physiology. Heart and circulatory physiology
researchProduct

Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems

2012

Cluster approach based on the multiple scattering theory formalism, realistic analytical and coherent potentials, as well as effective medium approximation (EMA-CPA), can be effectively used for nano-sized systems modeling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g., contacts of CNTs or (GNRs) with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems solving for resistance C-Me junctions with metal particles appear due to the influence of chirality effects …

Liquid metalMaterials scienceNanoelectronicsNanosensorElectrical resistivity and conductivitylawDangling bondNanotechnologyScattering theoryCarbon nanotubeGraphene nanoribbonslaw.invention
researchProduct

Scattering Processes in Nanocarbon-Based Nanointerconnects

2017

Cluster approach based on the multiple scattering theory (MST) formalism, realistic analytical and coherent potentials as well as effective medium approximation (EMA–CPA) can be effectively used for nanosized systems modelling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g. contacts of CNTs or GNRs with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems connected with the resistance of C–Me junctions with metal particles appear due to the influence of chirali…

Liquid metalMaterials scienceScatteringNanotechnologyCarbon nanotubelaw.inventionMetalNanoelectronicslawElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumElectronicsGraphene nanoribbons
researchProduct

1H-, 13C-, and 15N-NMR and ESI-TOF+ MS studies of a supramolecular complex of silver(I) and a cholaphane

2003

A novel application of the mixed anhydride procedure for synthesising lithocholic acid piperazine diamide, an important intermediate in designing bile acid-based supramolecular host molecules, is reported. The synthesis of a thiophene-containing cholaphane with transition metal complexation ability and 1H-, 13C-, and 15N-NMR as well as ESI-TOF+ MS spectral characterisation of the ligand and its Ag(I) complex are included. The coordination of the Ag(I) ion as well as an ability of the cholaphane to recognise Ag(I) ion over alkali metal ions, especially potassium ion, is discussed. The possible medical applications are also presented.

Lithocholic acidLigandOrganic ChemistryInorganic chemistrySupramolecular chemistryBiochemistryCombinatorial chemistryIonInorganic Chemistrychemistry.chemical_compoundPiperazinechemistryTransition metalMaterials ChemistryThiopheneMoleculePhysical and Theoretical ChemistryJournal of Organometallic Chemistry
researchProduct