Search results for "Phosphorus"

showing 10 items of 431 documents

Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption

2016

Article

0106 biological sciencesFISH COMMUNITY STRUCTUREDOCEnvironmental change01 natural sciencesPredatory fishEnvironmental Science(all)EUDIAPTOMUS-GRACILISEnvironmental change; Human nutritionahvenFood sciencePERCH PERCA-FLUVIATILISBiomassfosforilcsh:Environmental sciencesGeneral Environmental ScienceTrophic level2. Zero hungerlcsh:GE1-350PerchBiomass (ecology)FINNISH LAKESBOREAL LAKESbiologyEcologyHuman nutritionFatty AcidsFishesfood and beveragesPhosphorusEutrophicationEicosapentaenoic acid6. Clean waterFood webDHAEicosapentaenoic Acid1181 Ecology evolutionary biologyFatty Acids Unsaturatedlipids (amino acids peptides and proteins)PLANKTONIC ALGAEPerchFood ChainDocosahexaenoic Acidsta1172010603 evolutionary biologyPhytoplanktonAnimalsHumansDISSOLVED ORGANIC-CARBON14. Life underwaterhuman nutritionFatty Acids Essential010604 marine biology & hydrobiologyfungiEUROPEAN LAKESEPA15. Life on landbiology.organism_classificationLakesAquatic food webs13. Climate actionPerchesEURASIAN PERCHPhytoplanktonta1181EutrophicationFRESH-WATER MICROALGAE
researchProduct

Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests

2019

Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-rat…

0106 biological sciencesHigh forestCoppiceManagement Monitoring Policy and LawTemperate deciduous forestSoil fertility010603 evolutionary biology01 natural sciencesNutrient cyclingddc:570Base cationsBosecologie en Bosbeheer/dk/atira/pure/core/keywords/biologyInstitut für Biochemie und BiologieNature and Landscape ConservationEnvironmental planning2. Zero hungerTopsoilDecompositionpHSoil organic matter/dk/atira/pure/core/keywords/557265479Post-agricultural forestForestryPhosphorus15. Life on landPE&RCSoil typeForest Ecology and Forest ManagementAncient forestHigh forestAgronomyEcosystems ResearchSoil waterLitterEnvironmental scienceSoil fertility010606 plant biology & botany
researchProduct

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence

2013

'Summary' 26 I. 'Casting for a scenario' 26 II. 'Nominees for a preliminary role' 27 III. 'Nominees for a leading role' 32 IV. 'Future artists' 37   'Acknowledgements' 38   References 38 Summary The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a …

0106 biological sciencesLASER MICRODISSECTIONPhysiologycarbon (C)phosphorus (P)[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesPlant RootsGlomeromycotaMEDICAGO-TRUNCATULA ROOTSRNA interferenceMycorrhizaeLOTUS-JAPONICUSPlastidsMycorrhizaFUNGUS GLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSIONGenetics0303 health sciencesGene knockdownFungal proteinPHOSPHATE TRANSPORTERarbuscular mycorrhizaCADMIUM STRESS ALLEVIATIONfood and beveragesSTRIGOLACTONE BIOSYNTHESISArbuscular mycorrhizaEPIDERMAL-CELLSProtein Transportmembranes[SDE]Environmental SciencesSignal TransductionINTRACELLULAR ACCOMMODATIONHyphaeBiologybiotrophyPhosphatesFungal Proteins03 medical and health sciencesSymbiosisBotanyGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosis030304 developmental biologyfungi15. Life on landbiology.organism_classificationCarbonsilencing010606 plant biology & botany
researchProduct

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

2020

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…

0106 biological sciencesNutrient cycleEnvironmental EngineeringNitrogenchemistry.chemical_elementBioengineeringWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesNutrient010608 biotechnologyPhotosynthetic-based systemsRecyclingEnvironmental impact assessmentCircular EconomyWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesMembranesWaste managementRenewable Energy Sustainability and the Environment06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosCircular economyPhosphorusPhosphorusGeneral MedicineIncinerationNutrient recoveryWastewaterchemistryProcess efficiencyEnvironmental scienceCrystallization
researchProduct

The effects of absolute and relative nutrient concentrations (N/P) on phytoplankton in a subtropical reservoir

2020

Abstract The elemental composition of phytoplankton is a critical factor for primary production and nutrient recycling. The increase anthropogenic nutrient input into freshwater ecosystems is affecting phytoplankton assemblage structure and its stoichiometry. Reservoirs of South China generally show low level of phosphate and it is not clear how phytoplankton can grow and occasionally bloom in such conditions. Therefore, an indoor experiment was conducted to investigate the response of natural phytoplankton communities to 25 levels of supplied nitrogen to phosphorus ratios (N/P), arising from the combination of 5 levels of N and P. Our aim was to check the effects of absolute and relative N…

0106 biological sciencesNutrient cycleGeneral Decision Scienceschemistry.chemical_element010501 environmental sciences010603 evolutionary biology01 natural sciencesFreshwater ecosystemchemistry.chemical_compoundNutrientHomeostasiPhytoplanktonEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEcologyPhosphorusfungiPhosphateNitrogenCell sizeStoichiometrySubtropical reservoirchemistryEnvironmental chemistrySettore BIO/03 - Botanica Ambientale E ApplicataPhytoplankton communityBloomEcological Indicators
researchProduct

Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

2014

International audience; Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profil…

0106 biological sciencesPhysiologyPlant ScienceThylakoids01 natural sciencesPhaeodactylum tricornutumTranscriptomeMGDGNutrientnutrient starvationLipids metabolismSettore BIO/04 - Fisiologia VegetaleDigalactosyldiacylglycerolPhospholipids0303 health sciencesbiologyNitrogen starvationmicroalgaeMonogalactosyldiacyglycerolPhosphorusArticlesAdaptation PhysiologicalBiochemistryThylakoidSulfoquinovosyldiacylglycerollipids (amino acids peptides and proteins)DGDGNitrogenchemistry.chemical_elementlipidsMembrane Lipids03 medical and health sciencesSQDG[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPhaeodactylum tricornutumTriglycerides030304 developmental biologyDiatomsMembranesGene Expression ProfilingPhosphorusfungiPhosphorus starvationGlycerolipidsLipid metabolismmetabolic pathwaybiology.organism_classificationMetabolic pathwayPhosphatidylcholineDiatomchemistryPhytoplanktonLipidomics010606 plant biology & botany
researchProduct

Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system

2019

Arbuscular mycorrhizal fungi (AMF) can play a key role in natural and agricultural ecosystems affecting plant nutrition, soil biological activity and modifying the availability of nutrients by plants. This research aimed at expanding the knowledge of the role played by AMF in the uptake of macro- and micronutrients and N transfer (using a 15 N stem-labelling method) in a faba bean/wheat intercropping system. It also investigates the role of AMF in biological N fixation (using the natural isotopic abundance method) in faba bean grown in pure stand and in mixture. Finally, it examines the role of AMF in driving competition and facilitation between faba bean and wheat. Durum wheat and faba bea…

0106 biological sciencesPlant Roots01 natural sciencesSoilNutrientMycorrhizaeVegetablesBiomassTriticummedia_commonMultidisciplinaryN2 biological fixationQREukaryotafood and beveragesAgriculturePhosphorusIntercropping04 agricultural and veterinary sciencesPlantsAgricultural MethodsLegumesVicia fabaAMF symbiosiSettore AGR/02 - Agronomia E Coltivazioni ErbaceeWheatNitrogen fixationMedicineResearch ArticleCrops AgriculturalNitrogenBeansSoil biologymedia_common.quotation_subjectScienceCropsBiologyCompetition (biology)SymbiosisNitrogen FixationGrassesSymbiosisEcosystemInoculationfungiOrganismsFungiBiology and Life SciencesNutrientsbiology.organism_classificationCereal-legume intercroppingSpecies InteractionsIntercroppingAgronomy040103 agronomy & agriculture0401 agriculture forestry and fisheriesPlant nutritionCrop ScienceCereal Crops010606 plant biology & botany
researchProduct

Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in M edicago trun…

2013

International audience; Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cros…

0106 biological sciencesRhizophagus irregularisNitrogenPhysiologyPlant SciencePlant Roots01 natural sciencesPhosphatesPhosphorus metabolismTranscriptome03 medical and health scienceschemistry.chemical_compoundNutrientSymbiosisGene Expression Regulation PlantStress PhysiologicalMycorrhizaeMedicago truncatulaBotanyPlant defense against herbivory[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPhosphate Transport ProteinsGlomeromycotaSymbiosisPlant Proteins030304 developmental biology2. Zero hunger0303 health sciencesbiologyTerpenesfungifood and beveragesPhosphorusPhosphatebiology.organism_classificationMedicago truncatulaErythritolchemistrySugar PhosphatesTranscriptomeSignal Transduction010606 plant biology & botanyNew Phytologist
researchProduct

Ecological effects of aquaculture on living and non-living suspended fractions of the water column: a meta-analysis.

2006

The effects of aquaculture on the ecology of the water column have been extensively studied in the last two decades. However, to date, it has not been possible to extrapolate homogeneous information from the peer-reviewed literature. In the present study, 68 peer-reviewed articles were analysed and about 1087 study cases were used to test whether worldwide cultivations of aquatic organisms (shrimps, fish, bivalves and polyculture) have a differential effect on living and non-living fractions of the water column (suspended matter, chlorophyll-a, particulate organic carbon, nitrogen and phosphorus, bacteria and plankton). Meta-analysis feasibility depends on obtaining an estimate of the effec…

0106 biological sciencesSettore BIO/07 - EcologiaChlorophyllEnvironmental EngineeringWater columnNitrogenAquaculture010501 environmental sciencesBiologyParticulate Living and non-living fractionEnvironmentAquaculture impact01 natural sciencesWater columnBiopolymersAquaculturePhytoplanktonAnimalsMeta-analysi14. Life underwaterPolycultureWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringBacteriaEcologybusiness.industryEcology010604 marine biology & hydrobiologyEcological ModelingChlorophyll ABivalvePhosphorusParticulatesPlanktonPollutionCarbonShrimpShrimpFishPolyculturePhytoplanktonOrganic aquaculturebusinessWater MicrobiologyWater research
researchProduct

A meta-analysis on the ecological effects of aquaculture on the water column: dissolved nutrients

2007

Environmental effects of aquaculture loadings have often been reviewed descriptively, and thus have not provided quantitative estimates of the overall response in the water column. Meta-analytical reviewing techniques allow the contextualisation of quantitative effects in the domain of current literature. In the present paper, more than 50 peer-reviewed articles were analysed and about 425 study cases used to test whether worldwide cultivations have a differential effect on dissolved nutrient levels. Meta-analysis feasibility depends on obtaining an estimate of the effect size from every study and the most common measure of effect size (Hedges’ d) is the difference between means of controls…

0106 biological sciencesSettore BIO/07 - EcologiaWater columnchemistry.chemical_elementFresh WaterAquacultureAquatic ScienceBiologyOceanographyAquaculture impact01 natural scienceschemistry.chemical_compoundWater columnNutrientNitrateAquacultureDissolved nutrientSeawaterAmmoniumMeta-analysi14. Life underwaterNitriteNitritesComputingMilieux_MISCELLANEOUSNitratesEcologybusiness.industrySilicates010604 marine biology & hydrobiologyPhosphorusBivalveLife SciencesPhosphorus04 agricultural and veterinary sciencesGeneral MedicinePollutionQuaternary Ammonium CompoundsShrimpPooled varianceFishPolyculturechemistry040102 fisheries0401 agriculture forestry and fisheriesbusinessEnvironmental Monitoring
researchProduct