6533b7d8fe1ef96bd126ae0e

RESEARCH PRODUCT

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

María Victoria RuanoJosé FerrerAurora SecoL. BorrásN. MartíRamón BaratJuan Bautista GiménezJ. RibesJ. SerraltaD. AguadoÁNgel RoblesA. Bouzas

subject

0106 biological sciencesNutrient cycleEnvironmental EngineeringNitrogenchemistry.chemical_elementBioengineeringWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesNutrient010608 biotechnologyPhotosynthetic-based systemsRecyclingEnvironmental impact assessmentCircular EconomyWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesMembranesWaste managementRenewable Energy Sustainability and the Environment06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosCircular economyPhosphorusPhosphorusGeneral MedicineIncinerationNutrient recoveryWastewaterchemistryProcess efficiencyEnvironmental scienceCrystallization

description

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environmental innovation perspectives. The potentials and limitations of different technologies are discussed, covering systems based on membranes, photosynthesis, crystallization and other physical and biological nutrient recovery systems (e.g. incineration, composting, stripping and absorption and enhanced biological phosphorus recovery).

10.1016/j.biortech.2019.122673http://hdl.handle.net/10251/141642