0000000000003960

AUTHOR

N. Martí

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

[EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent charac…

research product

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

[EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar…

research product

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…

research product

Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater

The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH4 is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaer…

research product

Implementation of a global P-recovery system in urban wastewater treatment plants

[EN] Current wastewater treatment plants (WWTPs) paradigm is moving towards the so-called water resource recovery facilities in which sewage is considered a source of valuable resources. In particular, urban WWTPs are crucial systems to enhance phosphorus (P) recycling. This paper evaluates the implementation of a P-recovery system in Calahorra WWTP combining the operation of a new sludge line configuration coupled to a struvite crystallisation reactor at demonstration-scale. This new configuration consisted in the elutriation in the gravity thickener of the mixed sludge contained in the mixing chamber in order to reduce the phosphate load to the anaerobic digestion. The results indicated t…

research product

Anaerobic membrane bioreactors for resource recovery from municipal wastewater: a comprehensive review of recent advances

[EN] In a paradigm shift towards a sustainable society based on the Circular Economy, wastewater treatments are rapidly evolving towards simultaneous recovery and reuse of clean water, renewable energy, and nutrients. This review examines recent advances (from 2016 to 2020) in the potential of anaerobic membrane bioreactors (AnMBRs) to serve as the core technology for municipal wastewater (MWW) resource recovery, focusing on the latest technological advances and economic and environmental innovation perspectives. The potentials and limitations of AnMBR for further full-scale application and new platforms to address these challenges are discussed, covering systems based on co-digestion, pre-…

research product

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

[EN] Anaerobic membrane bioreactors (AnMBRs) can achieve maximum energy recovery from urban wastewater (UWW) by converting influent COD into methane. The aim of this study was to assess the anaerobic biodegradability limits of urban wastewater with AnMBR technology by studying the possible degradation of the organic matter considered as non-biodegradable as observed in aerobic membrane bioreactors operated at very high sludge retention times. For this, the results obtained in an AnMBR pilot plant operated at very high SRT (140 days) treating sulfate-rich urban wastewater were compared with those previously obtained with the system operating at lower SRT (29 to 70 days). At 140 days SRT the …

research product

Workshops of innovation in chemical engineering to train communication skills in science and technology

Abstract This paper shows the application of an innovate pedagogical approach based on the project-based learning technique, focused on the training of communication skills in the framework of a workshop of innovation in chemical engineering. Written, graphical verbal, and non-verbal communication were tackled. For that purpose, a project of technological innovation was developed by the students in teams within the specific area of chemical engineering. A professional-like environment was simulated by a final workshop where the students defenced and supported their project by using oral presentation and production of a poster and a video. Several surveys were performed before and after the …

research product

Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation

Phosphorus recovery by struvite (MgNH(4)PO(4).6H(2)O) crystallization is one of the most widely recommended technologies for treating sludge digester liquors especially in wastewater treatments plants (WWTP) with enhanced biological phosphorus removal (EBPR). In this paper, phosphorus recovery by struvite crystallization is assessed using the rejected liquors resulting from four different operational strategies of the sludge treatment line. Phosphorus precipitation and recovery efficiencies of between 80-90% and 70-85%, respectively, were achieved in the four experiments. The precipitates formed were mainly struvite, followed by amorphous calcium phosphate and, in some experiments, by calci…

research product

Analysis of uncontrolled phosphorus precipitation in anaerobic digesters under thermophilic and mesophilic conditions.

This study compares the operation of mesophilic and thermophilic anaerobic digestion of sewage sludge and their effects in uncontrolled phosphorus precipitation. The research has been carried out using a pilot plant consisting of two digesters of 1.6 m3 working volume, treating the mixed sludge of Alzira WWTP (Valencia, Spain). The digesters were operated in parallel, at different conditions: mesophilic (38 ± 2.0°C) and thermophilic (55 ± 2.5°C) temperatures and organic loading rates (OLR) ranging from 1.1 to 1.7 kg volatile solids (VS) m−3 d−1 and different hydraulic retention times (HRT) 20, 15 and 12 days. Uncontrolled precipitation was evaluated through P, Mg and Ca mass balances in bot…

research product

Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent

The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable approach for urban wastewater treatment at 33 and 20 C, since greenhouse gas emissions are reduced and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane technology allows the use of biogas-assisted mixing which enhances the methane stripping from the liquid phase bulk. The methane saturation index obtained for the whole period (1.00 ± 0.04) evidenced that the equilibrium condition was reached and the methane loss with the effluent was reduced. The methane recovery efficiency obtained at 20 C (53.6%) was slightly lower than at 33 C (57.4%) due to …

research product

An interlaboratory study as useful tool for proficiency testing of chemical oxygen demand measurements using solid substrates and liquid samples with high suspended solid content

In 2008, the first Proficiency Testing Scheme of Chemical Oxygen Demand (1stCOD-PTADG) was conducted to assess the results obtained for different research groups whose field work is mainly anaerobic digestion. This study was performed using four samples, two solid samples as raw materials and two solid samples to prepare high concentration suspended solid solutions. Invitations were sent to a large number of laboratories, mainly to anaerobic digestion research groups. Finally, thirty labs from sixteen countries agreed to participate, but for different reasons four participants could not send any data. In total, twenty-six results were reported to the COD-PT coordinator. This study showed th…

research product

Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain

A comprehensive study aimed at evaluating the occurrence, significance of concentrations and spatial distribution of priority pollutants (PPs) along the Comunidad Valenciana coastal waters (Spain) was carried out in order to fulfil the European Water Framework Directive (WFD). Additionally, PP concentrations were also analysed in the effluent of 28 WWTPs distributed along the studied area. In coastal waters 36 organic pollutants of the 71 analysed, including 26 PPs were detected although many of them with low frequency of occurrence. Only 13 compounds, which belong to four different classes (VOCs, organochlorinated pesticides, phthalates and tributyltin compounds (TBT)) showed a frequency o…

research product

Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants

[EN] Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover Pin the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumu…

research product

Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations

The objective of this study was to evaluate the effect of seasonal temperature variations on the anaerobic treatment of urban wastewater in membrane bioreactors (MBRs). To this aim, sludge production, energy recovery potential, chemical oxygen demand (COD) removal and membrane permeability were evaluated in a submerged anaerobic MBR fitted with industrial-scale membrane units. The plant was operated for 172 days, between summer and winter seasons. Sludge production increased and energy recovery potential decreased when temperature decreased. COD removal and membrane permeability remained nearby stable throughout the whole experimental period.

research product

Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants

The influence of separate and mixed thickening of primary and secondary sludge on struvite recovery was studied. Phosphorus precipitation in the digester was reduced from 13.7 g of phosphorus per kg of treated sludge in the separate thickening experiment to 5.9 in the mixed thickening experiment. This lessening of the uncontrolled precipitation means a reduction of the operational problems and enhances the phosphorus availability for its later crystallization. High phosphorus precipitation and recovery efficiencies were achieved in both crystallization experiments. However, mixed thickening configuration showed a lower percentage of phosphorus precipitated as struvite due to the presence of…

research product

Optimisation of sludge line management to enhance phosphorus recovery in WWTP

The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The…

research product

Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: a case study in Murcia, Spain.

The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occ…

research product

Struvite precipitation assessment in anaerobic digestion processes

Struvite precipitation causes important operational problems during the sludge treatment process, especially when EBPR sludge is treated. Predicting struvite formation is critical to be able to design process alternative that best minimises struvite precipitation. With this aim, phosphorus precipitation in an anaerobic digestion pilot plant was studied using experimental data and mass balance analysis. The results obtained showed significant phosphorus precipitation as struvite (58% of the fixed phosphorus) and a low precipitation of calcium phosphates (15%), forming mainly hydroxyapatite (HAP). The rest of the phosphorus fixed in the digester (27%) was attributed to adsorption processes on…

research product