6533b7d1fe1ef96bd125ce54
RESEARCH PRODUCT
A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization
A. BouzasAurora SecoJosé FerrerJuan Bautista GiménezN. Martísubject
Particulates hydrolysisEnvironmental EngineeringHydraulic retention timeDiffusion0208 environmental biotechnology02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and LawWaste Disposal Fluid01 natural sciencesHydrolysisBioreactorsSolubilization constantBioreactorAttentionAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesSuspended solidsSewageMathematical modellingChemistryGeneral MedicineSolids prediction020801 environmental engineeringMembraneAnMBRChemical engineeringParticleSewage treatmentdescription
[EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent characteristics is developed. The solubilization of organic particulates was clearly influenced by temperature and the SRT, whereas the hydraulic retention time influence was negligible. Furthermore, the activation energy value of about 20 kJ mol(-1) confirms the idea that diffusion of hydrolytic enzymes from the bulk solution to the particle surface is the rate-limiting step of hydrolysis.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-01 |