0000000000003963
AUTHOR
A. Bouzas
Use of biological and sedimentation models for designing Peñíscola WWTP.
This paper presents Peñíscola wastewater treatment plant design. Peñíscola is a tourist city in Castellón (Spain), whose population changes significantly between summer and the rest of the year. The design of the biological and settling treatment units has been confirmed by computer model simulations and provided for biological organic matter, nitrogen and phosphorus removal. Two different treatment schemes have been proposed in order to optimize the plant performance during both seasonal operations. During low-load season, the plant will be operated under extended aeration conditions, so further sludge stabilization will not be needed. During high-load season, the plant will be operated un…
A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization
[EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent charac…
Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand
[EN] In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an …
Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity
Abstract Anaerobic co-digestion of primary sludge and raw microalgae (Scenedesmus and Chlorella) was performed in a lab-scale semi-continuous anaerobic membrane bioreactor to assess the biological performance and identify the microbial community involved in the co-digestion process. The reactor was operated at 35 °C for 440 days, working at a solids retention time of 100 days. The system achieved 73% biodegradability and showed high stability in terms of pH and volatile fatty acids. An enriched microbial community was observed. Of the several phyla, Chloroflexi and Proteobacteria were the most abundant. Cellulose-degraders phyla (Bacteroidetes, Chloroflexi and Thermotogae) were detected. Sy…
Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)
[EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar…
New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy
[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…
Removal and fate of endocrine disruptors chemicals under lab-scalepostreatment stage. Removal assessment using light, oxygen and microalgae
[EN] The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each …
Guidelines for alkylphenols estimation as alkylphenol polyethoxylates pollution indicator in wastewater treatment plant effluents
A solid-phase microextraction coupled with a gas chromatography-mass spectrometry method has been developed for the estimation of technical nonylphenol in the presence of other endocrine disruptors, belonging to different chemical families. The profile of the technical nonylphenol found in real samples was tested, and, given that it was similar to that provided for the standard used, reliable results were obtainable. Endocrine disruptors such as 4-n-nonylphenol, bisphenol A and 4-tert-octylphenol were simultaneously analysed. The best conditions achieved enabled the analysis of all analytes using a sample volume of 15 mL or even only 300 μL. Using such a low sample volume reduced the filtra…
Application of the General Model "Biological Nutrient Removal Model No.1" to upgrade two full-scale WWTPs
In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produce…
Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: the role of sulphide and thiosulphate in the process.
This work studies the use of a well-known and spread activated sludge system (UCT configuration) to treat the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) treating domestic waste-water. Ammonia, phosphate, dissolved methane and sulphide concentrations in the SAnMBR effluent were around 55 mg NH4-N L-1, 7 mg PO4-P L-1, 30 mg non-methane biodegradable COD L-1, and 105 mg S2- L-1 respectively. The results showed a nitrification inhibition caused by the presence of sulphur compounds at any of the solids retention time (SRT) studied (15,20 and 25 days). This inhibition could be overcome increasing the hydraulic retention time (HRT) from 13 to 26 h. Among the sulphur compounds, …
Insights into the biological process performance and microbial diversity during thermophilic microalgae co-digestion in an anaerobic membrane bioreactor (AnMBR)
Abstract Harvested microalgae Chlorella spp. and primary sludge were co-digested in a laboratory-scale anaerobic membrane bioreactor (AnMBR) under thermophilic conditions (55 °C). The system was run for 700 days divided into four experimental phases to determine the influence of the organic loading rate on the process performance and the microbial community. The rise in organic loading rate from 0.17 to 0.5 gCOD·L−1·d−1 led to a 35% improvement in methane production. The system reached 69% biodegradability working at 0.5 gCOD·L−1·d−1 and a high solids retention time (70 d), indicating the efficient conversion of biomass into biogas through the AnMBR configuration while avoiding possible inh…
Implementation of a global P-recovery system in urban wastewater treatment plants
[EN] Current wastewater treatment plants (WWTPs) paradigm is moving towards the so-called water resource recovery facilities in which sewage is considered a source of valuable resources. In particular, urban WWTPs are crucial systems to enhance phosphorus (P) recycling. This paper evaluates the implementation of a P-recovery system in Calahorra WWTP combining the operation of a new sludge line configuration coupled to a struvite crystallisation reactor at demonstration-scale. This new configuration consisted in the elutriation in the gravity thickener of the mixed sludge contained in the mixing chamber in order to reduce the phosphate load to the anaerobic digestion. The results indicated t…
Calibration and simulation of ASM2d at different temperatures in a phosphorous removal pilot plant
In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good corresp…
Endocrine disrupter compounds removal in wastewater using microalgae: Degradation kinetics assessment
[EN] This paper describes a study carried out to determine the removal kinetics of four micropollutants (4-tert-octylphenol (OP), technical-nonylphenol (t-NP), 4-nonylphenol (4-NP) and bisphenol-A (BPA)) usually found in wastewater streams. The kinetic experiments were carried out in batch reactors containing the effluent of an Anaerobic Membrane BioReactor (AnMBR) in the presence of light, oxygen and microalgae. As the degradation process of the studied micropollutants obeyed a pseudo-first-order kinetics, the second-order kinetics for each micropollutant was then calculated. The second order rate constants for the hydroxyl radical (k.(OH)) ranged from 7.0.10(+10) to 6.6.10(+12) L.mol(-1).…
Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation
Phosphorus recovery by struvite (MgNH(4)PO(4).6H(2)O) crystallization is one of the most widely recommended technologies for treating sludge digester liquors especially in wastewater treatments plants (WWTP) with enhanced biological phosphorus removal (EBPR). In this paper, phosphorus recovery by struvite crystallization is assessed using the rejected liquors resulting from four different operational strategies of the sludge treatment line. Phosphorus precipitation and recovery efficiencies of between 80-90% and 70-85%, respectively, were achieved in the four experiments. The precipitates formed were mainly struvite, followed by amorphous calcium phosphate and, in some experiments, by calci…
Analysis of uncontrolled phosphorus precipitation in anaerobic digesters under thermophilic and mesophilic conditions.
This study compares the operation of mesophilic and thermophilic anaerobic digestion of sewage sludge and their effects in uncontrolled phosphorus precipitation. The research has been carried out using a pilot plant consisting of two digesters of 1.6 m3 working volume, treating the mixed sludge of Alzira WWTP (Valencia, Spain). The digesters were operated in parallel, at different conditions: mesophilic (38 ± 2.0°C) and thermophilic (55 ± 2.5°C) temperatures and organic loading rates (OLR) ranging from 1.1 to 1.7 kg volatile solids (VS) m−3 d−1 and different hydraulic retention times (HRT) 20, 15 and 12 days. Uncontrolled precipitation was evaluated through P, Mg and Ca mass balances in bot…
Densities, Viscosities, and Refractive Indices of the Binary Systems Methyl tert-Butyl Ether + 2-Methylpentane, + 3-Methylpentane, + 2,3-Dimethylpentane, and + 2,2,4-Trimethylpentane at 298.15 K
This paper reports experimental densities, viscosities, and refractive indices of the binary systems methyl tert-butyl ether (MTBE) + 2-methylpentane, + 3-methylpentane, + 2,3-dimethylpentane, and + 2,2,4-trimethylpentane over the entire range of composition, at 298.15 K and atmospheric pressure. Excess molar volumes and viscosity deviations were evaluated from the experimental data. These excess or derived properties were fitted to the Redlich−Kister equation to estimate the binary interaction parameters. The experimental values of viscosity have been compared to values predicted by means of the GC−UNIMOD model.
Modeling the decay of nitrite oxidizing bacteria under different reduction potential conditions
[EN] Autotrophic growth and decay rates of ammonium and nitrite oxidizing bacteria (AOB and NOB, respectively) have a significant impact on the design and on the process performance of wastewater treatment systems where nitrification occurs. Literature data on the separate decay rates of AOB and NOB is scarce and inconsistent. In this study, batch experiments based on respirometric techniques were conducted to determine the NOB decay rates under different oxidation-reduction potential conditions, in order to widen the understanding of nitrite dynamics. The decay rate measured under anoxic conditions was 85% lower than under aerobic conditions, whereas under anaerobic conditions the decay ra…
Fate of endocrine disruptor compounds in an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor
[EN] The occurrence and fate of three groups of micropollutants - alkylphenols, pentachlorophenol and hormones - were studied in a pilot plant consisting of an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor (University of Cape Town configuration - UCT). Under anaerobic conditions, the octylphenol and technical-nonylphenol soluble concentrations increased producing negative degradation ratios (i.e., -175 and -118%, respectively). However, high 4-n-nonylphenol and bisphenol-A degradation ratios (92 and 59% for 4-n-nonylphenol and bisphenol-A, respectively) as well as complete pentachlorophenol, estrone, 17 beta-estradiol and 17 alpha-ethinylestradiol removal were…
Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant
The paper expresses an attempt to tackle the problem due to the presence of micropollutants in wastewater which may be able to disrupt the endocrine system of some organisms. These kinds of compounds are ubiquitously present in municipal wastewater treatment plant (WWTP) effluents. The aim of this paper is to compare the fate of the alkylphenols-APs (4-(tert-octyl)) phenol, t-nonylphenol and 4-p-nonylphenol and the hormones (estrone, 17ß-estradiol and 17¿-ethinylestradiol) in a submerged anaerobic membrane bioreactor (SAMBR) pilot plant and in a conventional activated sludge wastewater treatment plant (CTP). The obtained results are also compared with the results obtained in a previous stud…
Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtration assessment
This research work proposes the scale-up evaluation in terms of biological and filtration performance from laboratory to pilot-scale of an anaerobic membrane bioreactor (AnMBR) co-digesting raw microalgae and primary sludge. Best operating conditions for this scale-up were energetically and economically assessed based on laboratory results. Economic balance showed 3% higher annual costs when operating a reactor at 100 d solids retention time (SRT) compared to 70 d SRT. Energetic balance showed a 5.5-fold increase in heat demand working at thermophilic temperature comparing to mesophilic. The AnMBR operating conditions were set at 70 d SRT and 35 °C. The pilot-scale and lab-scale co-digester…
Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process
[EN] A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic retention time, showing high stability in terms of pH and VFA concentration. The plant achieved a high degree of microalgae and primary sludge substrate degradation, resulting in a methane yield of 370 mLCH4·gVSinf¿1. Nutrient-rich effluent streams (685 mgN·L¿1 and 145 mgP·L¿1 in digestate and 395 mgNH4-N·L¿1 and 37 mgPO4-P·L¿1 in permeate) were obtained, allowing posterior nutrient recovery. Ammonium was recovered from the permeate as ammonia sulphate through a hydrophob…
Experimental sulphide inhibition calibration method in nitrification processes: A case-study.
[EN] Sulphide is one of the inhibitors in the nitrification process in WWTP in regions with sulphate rich soils. As little information is currently available on sulphide nitrification inhibition, the aim of this study was to develop a method based on a modification of the Successive Additions Method to calibrate the effect of sulphide on the activity of ammonia-oxidising bacteria (AOB) and nitrite-oxidising bacteria (NOB). The developed method was then applied to activated sludge samples from two WWTPs with different influent sulphide concentrations. In both cases, sulphide had a greater inhibitory effect on NOB than AOB activity. The sulphide inhibition was found to be lower in the activat…
An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses
[EN] As phosphorus is a non-renewable resource mainly used to produce fertilizers and helps to provide food all over the world, the proper management of its reserves is a global concern since it is expected to become scarcer in the near future. In this work we assessed two different sludge line configurations aiming for P extraction and recovery before anaerobic digestion and compared them with the classical configuration. This study has been performed by simulation with the model BNRM2 integrated in the software package DESASS 7.1. Configuration 1 was based on the production of a PO4-enriched stream from sludge via elutriation in the primary thickeners, while Configuration 2 was based on t…
Calibration and simulation of two large wastewater treatment plants operated for nutrient removal
Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration an…
Fermentation and elutriation of primary sludge: Effect of SRT on process performance
Abstract A primary sludge fermentation–elutriation pilot plant was operated using in-line and side-stream schemes. The influence of solids retention time, recirculation sludge flow-rate and solids concentration on the fermentation–elutriation process performance has been assessed in this paper. The use of high elutriation flows (12% of influent flow) improved the volatile fatty acids (VFA) concentration in the effluent stream. Suspended solids removal efficiency decreased in the primary settler when the solids retention time (SRT) was increased from 4 to 8 days. Disintegration step during hydrolysis process was pointed out as the main reason for that decrease. Maximum VFA productions were a…
Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain
A comprehensive study aimed at evaluating the occurrence, significance of concentrations and spatial distribution of priority pollutants (PPs) along the Comunidad Valenciana coastal waters (Spain) was carried out in order to fulfil the European Water Framework Directive (WFD). Additionally, PP concentrations were also analysed in the effluent of 28 WWTPs distributed along the studied area. In coastal waters 36 organic pollutants of the 71 analysed, including 26 PPs were detected although many of them with low frequency of occurrence. Only 13 compounds, which belong to four different classes (VOCs, organochlorinated pesticides, phthalates and tributyltin compounds (TBT)) showed a frequency o…
Modelling of an activated primary settling tank including the fermentation process and VFA elutriation
A complete model of a primary settler including both sedimentation and biological processes is presented. It is a one-dimensional model based on the solids flux concept and the conservation of mass that uses the Takács model for the settling velocity, which is corrected by a compression function in the lower layers. The biological model is based on the ASM2 and enlarged with the fermentation model proposed by this research group. The settler was split in ten layers and the flux terms in the mass balance for each layer is obtained by means of the settling model. A pilot plant has been operated to study the primary sludge fermentation and volatile fatty acids (VFA) elutriation in a primary se…
Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants
[EN] Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover Pin the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumu…
Fermentation of municipal primary sludge: effect of SRT and solids concentration on volatile fatty acid production
Laboratory bench-scale experiments were conducted to investigate the performance of primary sludge fermentation for volatile fatty acids production. Primary sludges from two major wastewater treatment plants located in Valencia (Pinedo and Carraixet) were used. Experiments were performed at solids retention times between 4 and 10 days, and total volatile solids concentrations between 0.6% and 2.8%. Operation at two temperatures (20 degrees C and 30 degrees C) was also checked. Results indicated the importance of feed sludge characteristics on volatile fatty acids yields, being approximately double for the Carraixet wastewater treatment plant sludge than for the Pinedo plant. In both cases, …
Estudio del proceso de desnitrificación en un reactor SBR alimentado con el afluente de un reactor anaerobio de membranas sumergidas SAnMER
El tratamiento o postratamiento de efluentes anaerobios sugiere del estudio de diversos procesos que permitan la eliminación o remoción de los contaminantes presentes. El objetivo de este trabajo consistió en el estudio de la capacidad de desnitrificación en condiciones anóxicas utilizando los distintos dadores de electrones, disponibles en el efluente del reactor SAnMBR tales como: ácidos grasos volátiles, metano disuelto y sulfuro. La importancia de este estudio radica en la posibilidad de utilizar los ácidos grasos volátiles, el metano y el sulfuro disuelto como dadores de electrones, para la eliminación de nitrógeno. El metano disuelto es una fuente de carbono muy barato y un gas de efe…
Identificación de bacterias filamentosas Thiothrix en el tratamiento del efluente de un reactor anaerobio de membranas sumergidas (SAnMBR)
En el tratamiento biológico de aguas residuales participan diversos microorganismos entre los que se encuentran las bacterias filamentosas. El crecimiento excesivo e incontrolado de estos microorganismos genera problemas asociados al esponjamiento de los fangos conocido como bulking y la formación de espumas o foaming. La correcta identificación de estos organismos tiene un papel importante en la toma de decisiones para la correcta operación de las plantas de tratamiento de agua residual. Los tratamientos anaerobios empleados para el tratamiento de aguas residuales urbanas e industriales, con un contenido alto de sulfatos en el afluente, generan efluentes que contienen concentraciones impor…
Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae
[EN] A laboratory bioreactor using rumen microorganisms to treat Scenedesmus spp. biomass was operated for 190 days. At first the bioreactor operated as a Rumen-like Fermenter (RF) with a Sludge Retention Time (SRT) of 7 days. The RF was subsequently transformed into an anaerobic digestion system including two configurations: continuously-stirred tank reactor and anaerobic membrane bioreactor in which different SRT values of up to 100 days were assessed. Methane production peaked at 214 mL CH4 g−1 CODIn with a SRT of 100 days. COD removal and BDP peaked at above 70% and 60%, respectively, at the highest SRT, with no pre-treatment prior to microalgae digestion. The waste sludge product…
Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants
The influence of separate and mixed thickening of primary and secondary sludge on struvite recovery was studied. Phosphorus precipitation in the digester was reduced from 13.7 g of phosphorus per kg of treated sludge in the separate thickening experiment to 5.9 in the mixed thickening experiment. This lessening of the uncontrolled precipitation means a reduction of the operational problems and enhances the phosphorus availability for its later crystallization. High phosphorus precipitation and recovery efficiencies were achieved in both crystallization experiments. However, mixed thickening configuration showed a lower percentage of phosphorus precipitated as struvite due to the presence of…
Optimisation of sludge line management to enhance phosphorus recovery in WWTP
The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The…
Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: a case study in Murcia, Spain.
The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occ…
Struvite precipitation assessment in anaerobic digestion processes
Struvite precipitation causes important operational problems during the sludge treatment process, especially when EBPR sludge is treated. Predicting struvite formation is critical to be able to design process alternative that best minimises struvite precipitation. With this aim, phosphorus precipitation in an anaerobic digestion pilot plant was studied using experimental data and mass balance analysis. The results obtained showed significant phosphorus precipitation as struvite (58% of the fixed phosphorus) and a low precipitation of calcium phosphates (15%), forming mainly hydroxyapatite (HAP). The rest of the phosphorus fixed in the digester (27%) was attributed to adsorption processes on…
P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources
[EN] Practical recovery of a non-renewable nutrient, such as phosphorus (P), is essential to support modern agriculture in the near future. The high P content of urine, makes it an attractive source for practicing the recovery of this crucial nutrient. This paper presents the experimental results at pilot-plant scale of struvite crystallisation from a source-separated urine stream using two different magnesium sources, namely magnesium chloride and seawater. The latter was chosen as sustainable option to perform P-recovery in coastal areas. Real seawater was used to assess in a more realistic way its efficiency to precipitate P as struvite, since its composition (with noticeable concentrati…