0000000000042994

AUTHOR

ÁNgel Robles

0000-0002-6023-1199

showing 58 related works from this author

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

2020

[EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g.m(-3).d(-1) when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N.m(-3).d(-1) and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P…

0106 biological sciencesINGENIERIA HIDRAULICAEnvironmental EngineeringHydraulic retention timeNitrogenUltrafiltrationBioengineering010501 environmental sciencesWastewater7. Clean energy01 natural sciencesEnergy requirementWaste Disposal FluidWater PurificationNutrient010608 biotechnologyHollow-fibre membranes[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringBiomassPondsWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesHigh rateRenewable Energy Sustainability and the EnvironmentGeneral MedicinePulp and paper industryProduced water6. Clean waterIndustrial-scaleHRAPMembraneNutrient recoveryWastewater13. Climate actionEnvironmental scienceSewage treatment
researchProduct

Harvesting Energy from Wastewater Using an Innovative Anaerobic Membrane Bioreactor

2015

WastewaterGeneral EngineeringEnvironmental scienceAnaerobic membrane bioreactorPulp and paper industryProceedings of the Water Environment Federation
researchProduct

Position paper - progress towards standards in integrated (aerobic) MBR modelling.

2020

Membrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control. This position paper aims at defining the current state of the art of the main integrated MBR models reported in the literature. On the basis of a modelling review, a standardized terminology is proposed to facilitate the further development and comparison of integrated membrane fouling models for aerobic MBRs. ispartof: WATER …

TechnologyEnvironmental EngineeringComputer sciencePROCESS SIMULATIONPRESSURE SET-POINTReactors de membranaEnvironmental Sciences & Ecology02 engineering and technology010501 environmental sciencesMembrane bioreactorMembranes (Technology)01 natural sciencesSUBMERGED MEMBRANE BIOREACTOREngineeringBioreactorsMembrane reactorsCONTROL-SYSTEMterminology[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringDEPOSITIONOPTIMIZATION0105 earth and related environmental sciencesWater Science and TechnologyScience & TechnologyCAKE LAYER FORMATIONSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleCOMPUTATIONAL FLUID-DYNAMICSMBR modellingMembrane foulingIntegrated modelMembranes (Tecnologia)Engineering EnvironmentalSystem optimizationMembranes ArtificialModels Theoretical021001 nanoscience & nanotechnologyTerminology6. Clean waterStandardized terminologyPhysical SciencesFILTRATIONWater ResourcesPosition paperBiochemical engineeringintegrated modelSENSITIVITY0210 nano-technologyLife Sciences & BiomedicineEnvironmental SciencesWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct

Contextualized project-based learning for training chemical engineers in graphic expression

2021

Abstract This paper describes the planning of a computer-aided design (CAD) laboratory for training chemical engineers in graphic expression. The CAD laboratory was organised into four projects following a project-based learning method. Flipped classroom and contextualised learning were used to motivate the students and promote meaningful learning. The laboratory mainly focused on engaging the students by replicating 2D and 3D plans of common industrial engineering equipment and piping and instrumentation diagrams of industrial facilities. Two surveys carried out before and after the course showed that the student’s perception of their graphic expression skills significantly increased. Gend…

Computer scienceGeneral Chemical Engineeringmedia_common.quotation_subject05 social sciences050301 educationCAD02 engineering and technologyProject-based learningFlipped classroomEducationLikert scale020401 chemical engineeringMeaningful learningExpression (architecture)PerceptionMathematics educationInstrumentation (computer programming)0204 chemical engineering0503 educationmedia_commonEducation for Chemical Engineers
researchProduct

Optimising an outdoor membrane photobioreactor for tertiary sewage treatment

2019

[EN] The operation of an outdoor membrane photobioreactor plant which treated the effluent of an anaerobic membrane bioreactor was optimised. Biomass retention times of 4.5, 6, and 9 days were tested. At a biomass retention time of 4.5 days, maximum nitrogen recovery rate:light irradiance ratios, photosynthetic efficiencies and carbon biofixations of 51.7¿±¿14.3¿mg¿N·mol¿1, 4.4¿±¿1.6% and 0.50¿±¿0.05¿kg CO2·m3influent, respectively, were attained. Minimum membrane fouling rates were achieved when operating at the shortest biomass retention time because of the lower solid concentration and the negligible amount of cyanobacteria and protozoa. Hydraulic retention times of 3.5, 2, and 1.5 days …

Hollow-fibre membraneINGENIERIA HIDRAULICAEnvironmental EngineeringHydraulic retention timeNitrogen0208 environmental biotechnologyBiomassPhotobioreactorMicroorganismesBiomassa02 engineering and technologyMembrane photobioreactor010501 environmental sciencesManagement Monitoring Policy and LawPhotosynthetic efficiencyPhotosynthesis01 natural sciencesPhotobioreactorsBioreactorsMicroalgae cultivationMicroalgaeBiomassWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesSewageOutdoorChemistryMembrane foulingMembranes ArtificialGeneral MedicinePulp and paper industry020801 environmental engineeringNutrient recoveryEnginyeria ambientalAigües residuals Plantes de tractamentSewage treatmentPhotosynthetic efficiencyJournal of Environmental Management
researchProduct

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

2018

[EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar…

INGENIERIA HIDRAULICAEnvironmental EngineeringBiosolidsNitrogen0208 environmental biotechnologyBiomassSewage02 engineering and technologyWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesWater PurificationBioreactorsEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyResource recoveryConservation of Water ResourcesSewageAnaerobic membrane bioreactor (AnMBR)Sulfatesbusiness.industryMembrane photobioreactor (MPBR)Resource recoveryAnaerobic digestion (AD)Pulp and paper industryReclaimed water020801 environmental engineeringWastewaterWater resource recovery facility (WRRF)Water ResourcesEnvironmental sciencebusinessWaste disposalWater Science and Technology
researchProduct

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

2020

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…

0106 biological sciencesNutrient cycleEnvironmental EngineeringNitrogenchemistry.chemical_elementBioengineeringWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesNutrient010608 biotechnologyPhotosynthetic-based systemsRecyclingEnvironmental impact assessmentCircular EconomyWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesMembranesWaste managementRenewable Energy Sustainability and the Environment06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosCircular economyPhosphorusPhosphorusGeneral MedicineIncinerationNutrient recoveryWastewaterchemistryProcess efficiencyEnvironmental scienceCrystallization
researchProduct

Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale

2011

The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON¿ Koch Membrane Systems, 30m 2 of filtration surface each). It was operated under mesophilic conditions (at 33°C), 70days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO 4-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22gL -1) were also analysed. The main performance results were about 87% of COD removal, efflu…

Hollow-fibre membraneINGENIERIA HIDRAULICABiogasUltrafiltrationEffluentsPilot ProjectsWastewater treatmentWastewaterWaste Disposal FluidIndustrial effluentPerformance assessmentBioreactorsAnaerobiosisWaste Management and DisposalHollow fiber membranePriority journalPilot plantsVolatile fatty acidWaste water managementChemistryChemical oxygen demandUrban wastewaterMethanationMembraneGeneral MedicinePulp and paper industryWaste treatmentHollow fiber reactorWastewaterIndustrial membranesSeparation techniqueMethaneBioconversionEnvironmental EngineeringUltrafiltrationBioreactorBioengineeringArticleWater PurificationBiogasBioreactorMicrofiltrationCitiesEffluentBiological water treatmentTECNOLOGIA DEL MEDIO AMBIENTESubmerged anaerobic membrane bioreactorBiological Oxygen Demand AnalysisMembranesExperimental studyRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringUrban areaMembranes ArtificialBiogas productionNonhumanAnaerobic digestionPilot plantChemical oxygen demandAnoxic conditions
researchProduct

Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model

2020

Abstract Plant-wide modelling can be considered an appropriate approach to represent the current complexity in water resource recovery facilities, reproducing all known phenomena in the different process units. Nonetheless, novel processes and new treatment schemes are still being developed and need to be fully incorporated in these models. This work presents a short chronological overview of some of the most relevant plant-wide models for wastewater treatment, as well as the authors' experience in plant-wide modelling using the general model BNRM (Biological Nutrient Removal Model), illustrating the key role of general models (also known as supermodels) in the field of wastewater treatment…

2019-20 coronavirus outbreakEnvironmental EngineeringProcess (engineering)Computer scienceSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)0208 environmental biotechnologySewagePlant-wide modelling02 engineering and technologyWastewater treatmentWastewater010501 environmental sciencesModels BiologicalWaste Disposal Fluid01 natural sciencesField (computer science)Physico-chemicalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologySewagebusiness.industryChemical and biological processesWater resource recoveryNutrients020801 environmental engineeringWork (electrical)Sewage treatmentAigües residuals Plantes de tractamentBiochemical engineeringbusinessWaste disposalFisicoquímica
researchProduct

A semi-industrial scale AnMBR for municipal wastewater treatment at ambient temperature: performance of the biological process

2022

A semi-industrial scale AnMBR plant was operated for more than 600 days to evaluate the long-term operation of this technology at ambient temperature (ranging from 10 to 27 ºC), variable hydraulic retention times (HRT) (from 25 to 41 h) and influent loads (mostly between 15 and 45 kg COD·d−1). The plant was fed with sulfate-rich high-loaded municipal wastewater from the pre-treatment of a full-scale WWTP. The results showed promising AnMBR performance as the core technology for wastewater treatment, obtaining an average 87.2 ± 6.1 % COD removal during long-term operation, with 40 % of the data over 90%. Five periods were considered to evaluate the effect of HRT, influent characteristics, CO…

Environmental EngineeringSewageEcological ModelingAnaerobiosiTemperatureWaste Disposal FluidPollutionWater PurificationBioreactorsAigües residuals Depuració Tractament biològicWaste Management and DisposalWater Science and TechnologyCivil and Structural Engineering
researchProduct

Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions

2013

The aim of this work was to evaluate the effect of temperature on the performance of industrial hollow-fibre (HF) membranes treating urban wastewater in a submerged anaerobic MBR system (SAnMBR). To this end, a demonstration plant with two commercial HF ultrafiltration membrane modules (PURON®, Koch Membrane Systems, PUR-PSH31) was operated at 20, 25 and 33 °C. The mixed liquor total solid (MLTS) level was a key factor affecting membrane permeability (K). K was higher under psychrophilic than mesophilic conditions when operating at similar transmembrane fluxes and MLTS, because the biomass activity of the psychrophilic mixed liquor was lower than the mesophilic mixed liquor. Thus, lower ext…

Mesophilic and psychrophilic anaerobic conditionsSoluble microbial products (SMPs)INGENIERIA HIDRAULICAMembrane permeabilityFoulingChemistryEnvironmental engineeringUltrafiltrationFiltration and SeparationPulp and paper industryAnalytical ChemistryMembraneExtracellular polymeric substanceMembrane permeabilityWastewaterExtracellular polymeric substances (EPSs)PsychrophileIndustrial hollow-fibre membranesTECNOLOGIA DEL MEDIO AMBIENTEMesophile
researchProduct

Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor.

2012

The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K 20) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33°C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm 3 m -2 h -1 (measured as Specific Gas Demand referred to membrane area). A linear dependence of K 20 on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L -1 and J 20 of 10 LMH. K 20 was maintained at sustai…

Submerged anaerobic membrane bioreactorINGENIERIA HIDRAULICAEnvironmental EngineeringChromatographyMembrane permeabilityChemistryFouling rateAnaerobic membrane bioreactorMembranes ArtificialTotal dissolved solidsWaste Disposal FluidPermeabilityMembranePilot plantBioreactorsWastewaterPermeability (electromagnetism)Industrial membranesAnaerobiosisSpargingTECNOLOGIA DEL MEDIO AMBIENTEWater Science and TechnologyMixed liquor total solids concentrationWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct

A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects

2018

[EN] The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouli…

Environmental EngineeringAnaerobic respirationControl aspectsProcess (engineering)0208 environmental biotechnologyAnaerobic Membrane Bioreactor (AnMBR)HydraulicsBioengineering02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesModellingWater PurificationBioreactors[CHIM.GENI]Chemical Sciences/Chemical engineeringControlBioreactor[CHIM]Chemical SciencesAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesFoulingRenewable Energy Sustainability and the EnvironmentGeneral MedicineFouling6. Clean water020801 environmental engineeringMembraneEnvironmental scienceSewage treatmentBiochemical engineeringAnaerobic exercise
researchProduct

Anaerobic membrane bioreactors for resource recovery from municipal wastewater: a comprehensive review of recent advances

2021

[EN] In a paradigm shift towards a sustainable society based on the Circular Economy, wastewater treatments are rapidly evolving towards simultaneous recovery and reuse of clean water, renewable energy, and nutrients. This review examines recent advances (from 2016 to 2020) in the potential of anaerobic membrane bioreactors (AnMBRs) to serve as the core technology for municipal wastewater (MWW) resource recovery, focusing on the latest technological advances and economic and environmental innovation perspectives. The potentials and limitations of AnMBR for further full-scale application and new platforms to address these challenges are discussed, covering systems based on co-digestion, pre-…

Energy recoveryEnvironmental EngineeringWaste management06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosbusiness.industryCircular economyReuseRenewable energySustainable society07.- Asegurar el acceso a energías asequibles fiables sostenibles y modernas para todosWastewaterBioreactorEnvironmental sciencebusinessTECNOLOGIA DEL MEDIO AMBIENTEWater Science and TechnologyResource recoveryEnvironmental Science: Water Research & Technology
researchProduct

Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): long-term validation

2013

The aim of this study was the long-term validation of a model capable of reproducing the filtration process occurring in a submerged anaerobic membrane bioreactor (SAnMBR) system. The proposed model was validated using data obtained horn a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. The validation was carried out using both lightly and heavily fouled membranes operating at different bulk concentrations, gas sparging intensities and transmembrane fluxes. Across a broad spectrum of operating conditions, the model correctly forecast the respective experimental data in the long term. The simulation results revealed the importance of controlling irreversible f…

EngineeringINGENIERIA HIDRAULICAFiltration and SeparationAnaerobic membrane bioreactorBiochemistryIndustrial-scale hollow fibre moduleslaw.inventionlawSubmergedGeneral Materials SciencePhysical and Theoretical ChemistrySpargingFiltrationTECNOLOGIA DEL MEDIO AMBIENTELong-term validationFiltration modelFoulingbusiness.industryEnvironmental engineeringTerm (time)MembraneResistance in seriesScientific methodbusinessAnaerobic exercise
researchProduct

A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors

2017

The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability ev…

Engineering[SDV]Life Sciences [q-bio]Winepilot plant scale02 engineering and technologyWastewater010501 environmental sciencesbioenergyWaste Disposal Fluid7. Clean energy01 natural sciencesMethanechemistry.chemical_compoundBioreactorsanaerobic fixed-bed reactorméthaneProcess engineeringWaste Management and DisposalWater Science and TechnologyGeneral Medicinewinery wastewaterbiogaz6. Clean watercontrôle de bioprocédépilot scaleWastewateréchelle piloteMethaneAnaerobic exerciseIndustrial Wastebioréacteur à lit fixeIndustrial wasteFuzzy Logic020401 chemical engineeringControl theoryBioreactorEnvironmental Chemistry0204 chemical engineeringEffluent0105 earth and related environmental sciencesbioénergielogique flouebusiness.industryanaerobic fixed-bed reactor;fuzzy-logic control;methane;pilot scale;winery wastewaterFatty Acids Volatilevinassefuzzy setsfuzzy-logic controlchemistryControl systemmarsh gasbusiness
researchProduct

Workshops of innovation in chemical engineering to train communication skills in science and technology

2019

Abstract This paper shows the application of an innovate pedagogical approach based on the project-based learning technique, focused on the training of communication skills in the framework of a workshop of innovation in chemical engineering. Written, graphical verbal, and non-verbal communication were tackled. For that purpose, a project of technological innovation was developed by the students in teams within the specific area of chemical engineering. A professional-like environment was simulated by a final workshop where the students defenced and supported their project by using oral presentation and production of a poster and a video. Several surveys were performed before and after the …

Engineeringbusiness.industryGeneral Chemical Engineeringmedia_common.quotation_subject05 social sciences050301 education02 engineering and technologyEducationEngineering managementPresentation020401 chemical engineeringComputingMilieux_COMPUTERSANDEDUCATION0204 chemical engineeringCommunication skillsbusiness0503 educationmedia_commonEducation for Chemical Engineers
researchProduct

Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater

2020

Abstract In order to assess the environmental feasibility of anaerobic membrane bioreactor (AnMBR) technology for urban wastewater (UWW) treatment at ambient temperature, a demonstration plant was operated within the LIFE MEMORY project ( http://www.life-memory.eu/en/ ). This plant incorporates full-scale hollow-fiber membrane modules and was fed with the effluent from the pre-treatment of the “Alcazar de San Juan” WWTP (Alcazar de San Juan, Ciudad Real, Spain). Because of the dimensions of this plant, the system can be regarded as a previous step to the scale-up of AnMBR technology for full-scale UWW treatment. High-energy recovery potentials were achieved treating medium-/high-loaded UWW …

chemistry.chemical_compoundchemistryFoulingWastewaterEnvironmental engineeringEnvironmental scienceDemonstration PlantEnvironmental impact assessmentAnaerobic membrane bioreactorEffluentControl methodsMethane
researchProduct

Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment

2015

[EN] The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J(20) slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ranged from Euro0.03 to Euro0.12 per m(3), mainly depending on SGD(m) (from 0.05 to 0.3 m(3)m(-2)h(-1)) and MLSS (from 5 to 25 gL-1). The optimal SGD(m) resulted in approx. 0.1 m(3)m(-2)h(-1).

Industrial-scale hollow-fiber membranesINGENIERIA HIDRAULICAGeneral Chemical EngineeringFiltration and Separation02 engineering and technology010501 environmental sciences01 natural scienceslaw.invention020401 chemical engineeringlawBioreactorUrban wastewater (UWW)0204 chemical engineeringFiltrationTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesChemistryProcess Chemistry and TechnologySubmerged anaerobic MBR (AnMBR)General ChemistryPulp and paper industryMembraneWastewaterProcess costingSewage treatmentBiochemical engineeringAnaerobic exerciseCAPEXOPEX
researchProduct

Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant

2012

The paper expresses an attempt to tackle the problem due to the presence of micropollutants in wastewater which may be able to disrupt the endocrine system of some organisms. These kinds of compounds are ubiquitously present in municipal wastewater treatment plant (WWTP) effluents. The aim of this paper is to compare the fate of the alkylphenols-APs (4-(tert-octyl)) phenol, t-nonylphenol and 4-p-nonylphenol and the hormones (estrone, 17ß-estradiol and 17¿-ethinylestradiol) in a submerged anaerobic membrane bioreactor (SAMBR) pilot plant and in a conventional activated sludge wastewater treatment plant (CTP). The obtained results are also compared with the results obtained in a previous stud…

INGENIERIA HIDRAULICAUnclassified drugEffluentsExtractionEstrogenic hormonesOxic conditionsMembrane bioreactorDegradationBioreactorsEndocrinologyChemical structureLimit of Detection(4 (tert octyl)) phenolWater PollutantsAnaerobiosisWater Science and TechnologyPilot plantsWaste water managementEstradiolChemistryMembranePhenol derivativeWater samplingPulp and paper industryWaste treatmentEndocrine disruptorWastewaterPollutant removalMembrane bioreactorSewage treatmentActivated sludge plantsAnaerobic exerciseAnaerobic membrane bioreactorActivated sludge plantChromatography GasEnvironmental EngineeringWaste water treatment plantHydraulic retention timeEstroneBioreactorMass fragmentographyPollutantSewage pumping plantsArticlePhenolsEthinylestradiolBioreactorWater treatment plantsEffluentSolid Phase MicroextractionTECNOLOGIA DEL MEDIO AMBIENTE3 nonylphenolChromatography4 nonylphenolAlkylphenol polyoxyethyl etherMembranes ArtificialAlkylphenolsHormoneHormonesActivated sludgeActivated sludgeAnoxic conditionsWater Science and Technology
researchProduct

Assessing and modeling nitrite inhibition in microalgae-bacteria consortia for wastewater treatment by means of photo-respirometric and chlorophyll f…

2022

Abstract Total nitrite (TNO2 = HNO2 + NO−2) accumulation due to the activity of ammonia-oxidizing bacteria (AOB) was monitored in microalgae-bacteria consortia, and the inhibitory effect of nitrite/free nitrous acid (NO2-N/FNA) on microalgae photosynthesis and inhibition mechanism was studied. A culture of Scenedesmus was used to run two sets of batch reactors at different pH and TNO2 concentrations to evaluate the toxic potential of NO2-N and FNA. Photo-respirometric tests showed that NO2-N accumulation has a negative impact on net oxygen production rate (OPRNET). Chlorophyll a fluorescence analysis was used to examine the biochemical effects of NO2-N stress and the mechanism of NO2-N inhi…

ChlorophyllPhotosynthetic reaction centrechemistry.chemical_classificationNitrous acidChlorophyll aEnvironmental EngineeringBacteriabiologyChemistryChlorophyll AElectron acceptorbiology.organism_classificationPollutionFluorescenceWater Purificationchemistry.chemical_compoundMicroalgaeEnvironmental ChemistryNitriteWaste Management and DisposalChlorophyll fluorescenceNitritesScenedesmusPhotosystemNuclear chemistryScience of The Total Environment
researchProduct

Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste

2018

[EN] This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of an initial screening to find out adequate filtration conditions and a real-time optimizer applied to a periodically calibrated filtration model for minimizing the operating costs. The initial screening consists of two statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values. The operating filtration cost after implementing the…

fouling[SDV]Life Sciences [q-bio]0208 environmental biotechnology02 engineering and technologyWastewater010501 environmental sciencesprocess control01 natural sciences7. Clean energyModellinganaerobic membrane bioreactor (AnMBR)law.inventionmodellingBioreactorsDigestion (alchemy)BiogaslawProcess controlurban wastewaterAnaerobiosisWaste Management and DisposalFiltrationTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesFoulingAnaerobic membrane bioreactor (AnMBR)Food wasteUrban wastewaterMembranes ArtificialFoulingPulp and paper industry6. Clean water020801 environmental engineeringFood wasteWastewaterfood waste13. Climate actionBiofuels[SDE]Environmental SciencesEnvironmental scienceProcess controlCo digestionFiltration
researchProduct

Preliminary data set to assess the performance of an outdoor membrane photobioreactor

2019

[EN] This data in brief (DIB) article is related to a Research article entitled 'Optimising an outdoor membrane photobioreactor for tertiary sewage treatment' [1]. Data related to the effect of substrate turbidity, the ammonium concentration at which the culture reaches nitrogen-deplete conditions and the microalgae growth rate under outdoor conditions is provided. Microalgae growth rates under different substrate turbidity were obtained to assess the reduction of the culture's light availability. Lab-scale experiments showed growth rates reductions of 22-44%. Respirometric tests were carried to know the limiting ammonium concentration in thismicroalgae-basedwastewater treatment system. Gro…

Aigua ContaminacióINGENIERIA HIDRAULICAPhotobioreactorMembrane photobioreactorlcsh:Computer applications to medicine. Medical informaticsTurbidity03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAmmoniumGrowth rateTurbiditylcsh:Science (General)TECNOLOGIA DEL MEDIO AMBIENTEScenedesmus030304 developmental biology0303 health sciencesMultidisciplinaryGrowth ratebiologyOutdoorSubstrate (chemistry)biology.organism_classificationPulp and paper industryChlorellachemistryEnvironmental ScienceAmmonium limitationEnvironmental sciencelcsh:R858-859.7Sewage treatmentEnginyeria ambiental030217 neurology & neurosurgerylcsh:Q1-390
researchProduct

Development and pilot-scale validation of a fuzzy-logic control system for optimization of methane production in fixed-bed reactors

2018

International audience; The objective of this study was to develop an advanced control system for optimizing the performance of fixed-bed anaerobic reactors. The controller aimed at maximizing the bio-methane production whilst controlling the volatile fatty acids content in the effluent. For this purpose, a fuzzy-logic controller was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale (350 L) treating raw winery wastewater. The results showed that the controller was able to adequately optimize the process performance, maximizing the methane production in terms of methane flow rate, resulting in an average methane yield of about 0.29 LCH4 g−1 COD. On the other han…

anaerobic digestionfixed-bed reactor[SDV]Life Sciences [q-bio]0208 environmental biotechnologybio-methane02 engineering and technologyIndustrial and Manufacturing EngineeringMethanechemistry.chemical_compound020401 chemical engineeringControl theoryProduction (economics)0204 chemical engineeringProcess engineeringEffluentbusiness.industryProcess (computing)Optimal controlwinery wastewater6. Clean water020801 environmental engineeringComputer Science Applicationsfuzzy-logic controlchemistryWastewaterControl and Systems EngineeringModeling and SimulationControl system[SDE]Environmental SciencesEnvironmental sciencebusinessoptimization
researchProduct

Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for mod…

2015

[EN] The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consump…

INGENIERIA HIDRAULICAEngineeringEnvironmental EngineeringCost-Benefit Analysis0208 environmental biotechnologySewageEnvironmental pollution02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and LawMembrane bioreactorGlobal Warming01 natural sciencesWater PurificationBioreactorsBioreactorAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesLife cycle costing (LCC)SewageLife cycle analysis (LCA)Steadystate performance modellingbusiness.industryUrbanizationSubmerged anaerobic MBR (AnMBR)Environmental engineeringMembranes ArtificialGeneral MedicineModels TheoreticalGlobal warming potential (GWP)Aerobiosis020801 environmental engineeringActivated sludgeWastewaterSewage treatmentEnvironmental PollutionbusinessAnaerobic exerciseJournal of Environmental Management
researchProduct

Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system

2013

A demonstration plant with two commercial HF ultrafiltration membrane modules (PURON (R), Koch Membrane Systems, PUR-PSH31) was operated with urban wastewater. The effect of the main operating variables on membrane performance at sub-critical and supracritical filtration conditions was tested. The physical operating variables that affected membrane performance most were gas sparging intensity and back-flush (BF) frequency. Indeed, low gas sparging intensities (around 0.23 Nm(3) h(-1) m(-2)) and low BF frequencies (30s back-flush for every 10 basic filtration relaxation cycles) were enough to enable membranes to be operated sub-critically even when levels of mixed liquor total solids were hi…

INGENIERIA HIDRAULICAEnvironmental EngineeringMembrane permeabilityAnalytical chemistryUltrafiltrationBack-flush frequencyPermeabilityBioreactorsHollow-fibre membranesBioreactorAnaerobiosisBiogas spargingWaste Management and DisposalSpargingTECNOLOGIA DEL MEDIO AMBIENTEWater Science and TechnologyCivil and Structural EngineeringSubmerged anaerobic membrane bioreactorChromatographyFoulingChemistryEcological ModelingCommercialMembranes ArtificialPollutionAnaerobic digestionMembraneMembrane permeabilityWastewaterPermeability (electromagnetism)
researchProduct

Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hy…

2021

[EN] AnMBR technology is a promising alternative to achieve future energy-efficiency and environmental-friendly urban wastewater (UWW) treatment. However, the large amount of dissolved methane lost in the effluent represents a potential high environmental impact that hinder the feasibility of this technology for full-scale applications. The use of degassing membranes (DM) to capture the dissolved methane from AnMBR effluents can be considered as an interesting alternative to solve this problem although further research is required to assess the suitability of this emerging technology. The aim of this study was to assess the effect of operating temperature and hydrodynamics on the capture of…

Dissolved methane captureEnvironmental EngineeringGreenhouse gas (GHG) emissions0208 environmental biotechnology02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawWastewater01 natural sciencesWaste Disposal FluidMethaneWater Purificationchemistry.chemical_compoundBioreactorsOperating temperatureMass transferAnaerobiosisDimethylpolysiloxanesWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesPDMS degassing MembraneEnergy recoveryFoulingAnaerobic membrane bioreactor (AnMBR)Membrane foulingUrban wastewaterTemperatureMembranes ArtificialGeneral MedicinePulp and paper industry020801 environmental engineeringWastewaterchemistryHydrodynamicsEnvironmental scienceMethaneJournal of environmental management
researchProduct

A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology

2016

[EN] The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess t…

INGENIERIA HIDRAULICAEngineeringPlant-wide energy modelAnaerobic MBR020209 energyPortable water purificationWastewater treatment02 engineering and technologyWastewatercomputer.software_genreWaste Disposal FluidMethaneWater Purificationchemistry.chemical_compoundBioreactorsBNRM20202 electrical engineering electronic engineering information engineeringBioreactorEnvironmental ChemistryAnaerobiosisProcess engineeringWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEWater Science and Technologybusiness.industryTemperatureEnvironmental engineeringMembranes ArtificialGeneral MedicineDESASSModels TheoreticalPower (physics)Simulation softwareActivated sludgeWastewaterchemistrySewage treatmentbusinessMethanecomputerEnvironmental Technology
researchProduct

Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste

2016

[EN] The objective of this study was to evaluate the economic and environmental sustainability of a sub- merged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR tec…

INGENIERIA HIDRAULICAEnvironmental EngineeringMunicipal solid waste0208 environmental biotechnologySewageIncineration02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and LawSolid WasteOrganic fraction of municipal solid waste (OFMSW)Waste Disposal Fluid01 natural sciencesBioreactorsBiogasUrban wastewater (UWW)Ambient temperatureWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesEnergy recoverySewageWaste managementSulfatesbusiness.industryAnaerobic membrane bioreactor (AnMBR)Life cycle analysis (LCA)TemperatureEnvironmental engineeringMembranes ArtificialGeneral MedicineRefuse Disposal020801 environmental engineeringIncinerationEnergy consumptionWaste Disposal FacilitiesWastewaterBiofuelBiofuelsCosts and Cost AnalysisEnvironmental sciencebusinessMethane
researchProduct

Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study

2015

[EN] The main objective of this study is to propose guidelines for designing submerged anaerobic MBR (AnMBR) technology for municipal wastewater treatment. The design methodology was devised on the basis of simulation and experimental results from an AnMBR plant featuring industrial-scale hollow-fibre membranes. The proposed methodology aims to minimise both capital expenditure and operating expenses, and the key parameters considered were: hydraulic retention time, solids retention time, mixed liquor suspended solids concentration in the membrane tank, 20 C-standardised critical flux, specificgas demand per square metre of membrane area, and flow of sludge being recycled from the membrane …

CAPEX/OPEXINGENIERIA HIDRAULICAEngineeringIndustrial-scale hollow-fibre membranesWaste managementHydraulic retention timebusiness.industrySubmerged anaerobic MBR (AnMBR)Environmental engineeringFiltration and SeparationAnalytical ChemistrySquare meterMixed liquor suspended solidsMembraneWastewaterMunicipal wastewater treatmentDesign methodologyBioreactorAnaerobic reactorbusinessAnaerobic exerciseTECNOLOGIA DEL MEDIO AMBIENTESeparation and Purification Technology
researchProduct

Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion

2020

International audience; This review aims at providing a unified methodology for free ammonia nitrogen (FAN) calculation in anaerobic digesters, also identifying the factors causing the huge disparity in FAN inhibitory limits. Results show that assuming ideal equilibria overestimates the FAN concentrations up to 37% when compared to MINTEQA2 Equilibrium Speciation Model, used as reference. The Davies equation led to major improvements. Measuring the concentrations of NH 4 þ , Na þ and K þ was enough to achieve major corrections. The best compromise between complexity and accuracy was achieved with a novel modified Davies equation, with systematic differences in FAN concentrations of 2% when …

Davies equationbiologyRenewable Energy Sustainability and the Environment020209 energySoil science02 engineering and technologyMethanosarcinabiology.organism_classificationMethanogenMethanosaetaAnaerobic digestionMethanoculleusBiogas[SDE]Environmental Sciences0202 electrical engineering electronic engineering information engineeringResilience (materials science)MathematicsRenewable and Sustainable Energy Reviews
researchProduct

Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

2016

The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitori…

Work (thermodynamics)start-upEnvironmental EngineeringPeriod (periodic table)[SDV]Life Sciences [q-bio]BicarbonateNuclear engineering0208 environmental biotechnologyAnalytical chemistry02 engineering and technology010501 environmental sciencesbioréacteur à lit fixe7. Clean energy01 natural scienceson line measurementchemistry.chemical_compoundBacteria AnaerobicReliability (semiconductor)BioreactorsElectrical resistivity and conductivityconductivité électriqueBioreactorelectroconductivityAnaerobiosis0105 earth and related environmental sciencesWater Science and TechnologyElectric ConductivityReproducibility of ResultsStart up020801 environmental engineeringchemistrydémarragecapteurAnaerobic exerciseWater Pollutants Chemicalmesure en ligneWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct

Global sensitivity and uncertainty analysis of a microalgae model for wastewater treatment.

2022

The results of a global sensitivity and uncertainty analysis of a microalgae model applied to a Membrane Photobioreactor (MPBR) pilot plant were assessed. The main goals of this study were: (I) to identify the sensitivity factors of the model through the Morris screening method, i.e. the most influential factors; (II) to calibrate the influential factors online or offline; and (III) to assess the model's uncertainty. Four experimental periods were evaluated, which encompassed a wide range of environmental and operational conditions. Eleven influential factors (e.g. maximum specific growth rate, light intensity and maximum temperature) were identified in the model from a set of 34 kinetic pa…

Environmental EngineeringUncertaintyExperimental dataPhotobioreactorWastewaterPollutionWater PurificationSet (abstract data type)Light intensityPhotobioreactorsStatisticsCalibrationRange (statistics)MicroalgaeEnvironmental ChemistryEnvironmental scienceSensitivity (control systems)BiomassWaste Management and DisposalUncertainty analysisThe Science of the total environment
researchProduct

Modelling hydrolysis: Simultaneous versus sequential biodegradation of the hydrolysable fractions

2018

Hydrolysis is considered the limiting step during solid waste anaerobic digestion (including co-digestion of sludge and biosolids). Mechanisms of hydrolysis are mechanistically not well understood with detrimental impact on model predictive capability. The common approach to multiple substrates is to consider simultaneous degradation of the substrates. This may not have the capacity to separate the different kinetics. Sequential degradation of substrates is theoretically supported by microbial capacity and the composite nature of substrates (bioaccessibility concept). However, this has not been experimentally assessed. Sequential chemical fractionation has been successfully used to define i…

[SDV.BIO]Life Sciences [q-bio]/BiotechnologyBiosolidsSEQUENTIAL EXTRACTIONANAEROBIC DIGESTIONBIODEGRADATION02 engineering and technology010501 environmental sciencesTRITICUM AESTIVUM01 natural sciences7. Clean energyNUMERICAL MODELSLUDGE DIGESTIONBioreactorsMETHANEBIOLOGICAL MATERIALSACTIVATED SLUDGE0202 electrical engineering electronic engineering information engineeringAnaerobiosisSequential modelPRIORITY JOURNALWaste Management and DisposalComputingMilieux_MISCELLANEOUSCALIBRATIONSewageCONCENTRATION (PARAMETER)ChemistryFRACTIONATIONACID HYDROLYSISINCUBATION TIMEMODELLINGHYDROLYSISCHEMICAL FRACTIONATIONSEQUENTIAL DEGRADATIONBiodegradation EnvironmentalWASTE TREATMENTORGANIC MATTER[SDE]Environmental SciencesANAEROBIC DIGESTION MODELADM1SOLID WASTE020209 energyMODELSFractionationCAPACITYHydrolysisDIGESTIONISOTOPIC FRACTIONATIONNONHUMANCHEMICAL OXYGEN DEMANDARTICLEMODEL SELECTION0105 earth and related environmental sciencesChromatographyModels TheoreticalSUBSTRATESBiodegradationSIMULTANEOUS DEGRADATIONHOMOGENEOUS MATERIALSAnaerobic digestionWASTE WATER MANAGEMENTActivated sludgeAPPLEDegradation (geology)Waste Management
researchProduct

Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR)

2014

The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e…

EngineeringINGENIERIA HIDRAULICAEnvironmental EngineeringCalibration (statistics)Bioengineeringlaw.inventionBioreactorsGlobal sensitivity analysislawBioreactorSensitivity (control systems)AnaerobiosisWaste Management and DisposalFiltrationTECNOLOGIA DEL MEDIO AMBIENTEFiltration modelRenewable Energy Sustainability and the Environmentbusiness.industryEnvironmental engineeringMembranes ArtificialGeneral MedicineModels TheoreticalMembraneGlobal sensitivity analysisCalibrationMorris screeningBiochemical engineeringbusinessAnaerobic exerciseSubmerged anaerobic membrane bioreactorsFiltration
researchProduct

Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage

2018

[EN] The objective of this work was to evaluate the performance of a pilot scale membrane photobioreactor (MPBR) for treating the effluent of an anaerobic membrane bioreactor (AnMBR) system. In particular, new experimental data on microalgae productivity, nutrient recovery, CO2 biofixation and energy recovery potential was obtained under different operating conditions, which would facilitate moving towards cost-effective microalgae cultivation on wastewater. To this aim, a 2.2-m(3) MPBR equipped with two commercial-scale hollow-fibre ultrafiltration membrane modules was operated treating the nutrient-loaded effluent from an AnMBR for sewage treatment. The influence of several design, enviro…

INGENIERIA HIDRAULICA020209 energyStrategy and ManagementUltrafiltrationBiomassPhotobioreactor02 engineering and technologyMembrane photobioreactor010501 environmental sciences01 natural sciencesIndustrial and Manufacturing EngineeringMicroalgae cultivation0202 electrical engineering electronic engineering information engineeringEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesGeneral Environmental ScienceSuspended solidsEnergy harvestingRenewable Energy Sustainability and the EnvironmentPulp and paper industryReclaimed waterSewage treatmentNutrient recoveryWastewaterEnvironmental scienceSewage treatmentCarbon dioxide captureJournal of Cleaner Production
researchProduct

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

2020

[EN] This study aimed to evaluate the feasibility of degassing membrane (DM) technology for recovering dissolved methane from AnMBR effluents. For that purpose, a PDMS membrane module was operated for treating the effluent from an AnMBR prototype-plant, which treated urban wastewater (UWW) at ambient temperature. Different transmembrane pressures and liquid flow rates were applied for evaluating methane recovery efficiency. Maximum methane recoveries were achieved when increasing the vacuum pressure and reducing the liquid flow rate, reaching a maximum methane recovery efficiency of around 80% at a transmembrane pressure (TMP) of 0.8 bars and a treatment flow rate (Q(L)) of 50 L h(-1). The …

Payback periodFiltration and Separation02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryMethanechemistry.chemical_compoundGeneral Materials SciencePhysical and Theoretical ChemistryEffluentTECNOLOGIA DEL MEDIO AMBIENTEPDMS degassing MembraneTreated waterAnaerobic membrane bioreactor (AnMBR)Urban wastewaterMethane recovery021001 nanoscience & nanotechnologyPulp and paper industry0104 chemical sciencesVolumetric flow rateGreenhouse gas (GHG)MembranechemistryWastewaterGreenhouse gasEnvironmental science0210 nano-technology
researchProduct

The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater

2014

The objective of this study was to evaluate the operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater (UWW) at ambient temperature (ranging from 17 to 33 degrees C). To this aim, energy consumption, methane production, and sludge handling and recycling to land were evaluated. The results revealed that optimising specific gas demand with respect to permeate volume (SGDp) and sludge retention time (for given ambient temperature conditions) is essential to maximise energy savings (minimum energy demand: 0.07 kW h m(-3)). Moreover, low/moderate sludge productions were obtained (minimum value: 0.16 kg TSS kg(-1) CODRemoved), which further enhanced the…

INGENIERIA HIDRAULICAEnergy demandIndustrial-scale hollow-fibre membranesOperating costTreated waterAnaerobic membrane bioreactor (AnMBR)Environmental engineeringFiltration and SeparationAnaerobic membrane bioreactorEnergy consumptionMethaneAnalytical ChemistryEnergy consumptionchemistry.chemical_compoundWastewaterVolume (thermodynamics)chemistryEnvironmental scienceSulphate-rich urban wastewaterOperating costTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct

Sub-critical filtration conditions of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system: The effect of gas sparging i…

2012

A submerged anaerobic MBR demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was operated using municipal wastewater at high levels of mixed liquor total solids (MLTS) (above 22gL -1). A modified flux-step method was applied to assess the critical flux (J C) at different gas sparging intensities. The results showed a linear dependency between J C and the specific gas demand per unit of membrane area (SGD m). J C ranged from 12 to 19LMH at SGD m values of between 0.17 and 0.5Nm 3h -1m -2, which are quite low in comparison to aerobic MBR. Long-term trials showed that the membranes operated steadily at fluxes close to the est…

Hollow-fibre membraneINGENIERIA HIDRAULICABiofoulingMicrofiltrationModified flux-step methodUltrafiltrationWastewaterSludgelaw.inventionGas spargingBioreactorslawFlux-step methodCritical fluxWaste Management and DisposalSpargingHollow fiber membranePriority journalWaste water managementChemistryMembraneGeneral MedicineEquipment DesignHollow fiber reactorMembraneGasesWaste waterPorosityAnaerobic membrane bioreactorEnvironmental EngineeringUltrafiltrationBioreactorBioengineeringWater filtrationArticleBacteria AnaerobicBioreactorMicrofiltrationIndustrial hollow-fibre membranesFiltrationTECNOLOGIA DEL MEDIO AMBIENTESubmerged anaerobic membrane bioreactorChromatographyMembranesFoulingRenewable Energy Sustainability and the EnvironmentLong-term changeMembranes ArtificialEquipment Failure AnalysisHollow fiber membraneComparative studyAnoxic conditions
researchProduct

Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed w…

2016

[EN] With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55 m3 flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20 °C. The maximum biomass productivity (52.3 mg VSS·L−1·d−1) and NRR (5.84 mg NH4-N·L−1·d−1 and 0.85 mg PO4-P·L−1·…

INGENIERIA HIDRAULICAEnvironmental EngineeringLight020209 energyFlat-plate photobioreactorsBiomassSewagePhotobioreactorBioengineering02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesPhotobioreactorsNutrientBioreactorsNutrient removal0202 electrical engineering electronic engineering information engineeringMicroalgaeBiomassWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesResource recoverySewageRenewable Energy Sustainability and the Environmentbusiness.industryEnvironmental engineeringTemperatureMembranes ArtificialGeneral MedicineOutdoor cultivationCulture MediaLight intensityWastewaterWater ResourcesEnvironmental sciencebusinessWater MicrobiologyBiotechnologyScenedesmusBioresource technology
researchProduct

Considering syntrophic acetate oxidation and ionic strength improves the performance of models for food waste anaerobic digestion.

2021

Current mechanistic anaerobic digestion (AD) models cannot accurately represent the underlying processes occurring during food waste (FW) AD. This work presents an update of the Anaerobic Digestion Model no. 1 (ADM1) to provide accurate estimations of free ammonia concentrations and related inhibition thresholds, and model syntrophic acetate oxidation as acetate-consuming pathway. A modified Davies equation predicted NH3 concentrations and pH more accurately, and better estimated associated inhibitory limits. Sensitivity analysis results showed the importance of accurate disintegration kinetics and volumetric mass transfer coefficients, as well as volatile fatty acids (VFAs) and hydrogen up…

ADM1Environmental EngineeringHydrogenchemistry.chemical_elementBioengineeringAcetatesModellingAmmoniachemistry.chemical_compoundBioreactorsMass transferAnaerobic digestionAnaerobiosisWaste Management and DisposalDavies equationchemistry.chemical_classificationAmmonia inhibitionRenewable Energy Sustainability and the EnvironmentOsmolar ConcentrationSyntrophic acetate oxidationGeneral MedicineRefuse DisposalAnaerobic digestionFood wastechemistryIonic strengthFoodEnvironmental chemistryPropionateMethaneBioresource technology
researchProduct

Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs)

2013

The main aim of this study was to develop an advanced controller to optimise filtration in submerged anaerobic MBRs (SAnMBRs). The proposed controller was developed, calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes with variable influent flow and load. This 2-layer control system is designed for membranes operating sub-critically and features a lower layer (on/off and PID controllers) and an upper layer (knowledge-based controller). The upper layer consists of a MIMO (multiple-input-multiple-output) control structure that regulates the gas sparging for membrane scouring and the frequency of physical cleaning (ventilation and back f…

INGENIERIA HIDRAULICAIndustrial-scale hollow-fibre membranesFoulingKnowledge-based controllerEnvironmental engineeringPID controllerFiltration and SeparationEnergy savingsBiochemistrylaw.inventionAdvanced control systemMembraneControl theorylawControl systemSubmerged anaerobic MBRVentilation (architecture)Environmental scienceGeneral Materials SciencePhysical and Theoretical ChemistrySpargingFiltrationTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

2020

[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…

0106 biological sciencesEnvironmental EngineeringBioengineeringMild/warmer climateWastewater010501 environmental sciencesWaste Disposal Fluid01 natural scienceschemistry.chemical_compoundBioreactors010608 biotechnologyBioreactorUrban wastewater (UWW)AnaerobiosisSulfateWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesRenewable Energy Sustainability and the EnvironmentAnaerobic membrane bioreactor (AnMBR)Membrane foulingMembranes ArtificialGeneral MedicineBiodegradationPulp and paper industryMethane productionIndustrial-scale membraneMembraneWastewaterchemistryEnvironmental scienceMethaneAnaerobic exerciseDemonstration plant
researchProduct

Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions

2021

[EN] A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphoru…

INGENIERIA HIDRAULICAEnvironmental EngineeringNitrogenBiomassPhotobioreactorchemistry.chemical_elementWastewaterNutrients removalPhotobioreactorsMathematical modelMicroalgaeEnvironmental ChemistryOrganic matterBiomassWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEchemistry.chemical_classificationSewage06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosPhosphorusPhosphorusPulp and paper industryPollutionPhosphorus storageLight intensityWastewaterchemistryEnvironmental scienceSewage treatmentEutrophication
researchProduct

A filtration model applied to submerged anaerobic MBRs (SAnMBRs)

2013

The aim of this study was to develop a model able to correctly reproduce the filtration process of submerged anaerobic MBRs (SAnMBRs). The proposed model was calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. Three suspended components were contemplated in the model: total solids concentration; dry mass of cake on the membrane surface; and dry mass of irreversible fouling on the membrane surface. The model addressed the following physical processes: the build-up and compression of the cake layer during filtration; cake layer removal using biogas sparging to scour the membrane; cake layer removal during back-flushing; and the consoli…

INGENIERIA HIDRAULICAIndustrial-scale hollow-fibre membranesFiltration modelFoulingChemistryEnvironmental engineeringFiltration and SeparationTotal dissolved solidsPulp and paper industryBiochemistryResistance-in-series-basedMembraneBiogasSubmerged anaerobic MBRGeneral Materials ScienceLayer removalPhysical and Theoretical ChemistryMembrane surfaceAnaerobic exerciseSpargingTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

2020

[EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and contro…

AcidogenesisAnaerobic membrane bioreactorEnvironmental EngineeringMethanogenesis0208 environmental biotechnology02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidBioreactorsBNRM2BioreactorAnaerobiosisWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringSulfate-rich urban wastewaterSulfatesEcological ModelingModelingPulp and paper industryPollution020801 environmental engineeringAnaerobic digestionPilot plantWastewaterAcetogenesisEnvironmental scienceMethane
researchProduct

Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations

2014

The objective of this study was to evaluate the effect of seasonal temperature variations on the anaerobic treatment of urban wastewater in membrane bioreactors (MBRs). To this aim, sludge production, energy recovery potential, chemical oxygen demand (COD) removal and membrane permeability were evaluated in a submerged anaerobic MBR fitted with industrial-scale membrane units. The plant was operated for 172 days, between summer and winter seasons. Sludge production increased and energy recovery potential decreased when temperature decreased. COD removal and membrane permeability remained nearby stable throughout the whole experimental period.

Biological Oxygen Demand AnalysisEnergy recoveryINGENIERIA HIDRAULICAEnvironmental EngineeringMembrane permeabilityChemical oxygen demandEnvironmental engineeringTemperatureMembranes ArtificialBiological Oxygen Demand AnalysisPulp and paper industryMembraneBioreactorsWastewaterWaste ManagementBioreactorEnvironmental scienceAnaerobiosisSeasonsAnaerobic exerciseMethaneTECNOLOGIA DEL MEDIO AMBIENTEWater Science and Technology
researchProduct

Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment.

2017

[EN] Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5 mg S L¿1 reduced OPR by 43%, while a concentration of 50 mg S L¿1 came close to completely inhibiting microalgae gro…

INGENIERIA HIDRAULICAEnvironmental EngineeringSulphide0208 environmental biotechnologySewageBioengineering02 engineering and technologyChlorella010501 environmental sciencesSulfides01 natural sciencesNutrientBioreactorMicroalgaeWaste Management and DisposalEffluentScenedesmusTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologySewageRenewable Energy Sustainability and the Environmentbusiness.industryEnvironmental engineeringGeneral Medicinebiology.organism_classification020801 environmental engineeringWaste treatmentChlorellaEnvironmental chemistrySewage treatmentbusinessScenedesmusBioresource technology
researchProduct

Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR)

2014

This paper describes a model-based method to optimise filtration in submerged AnMBRs. The method is applied to an advanced knowledge-based control system and considers three statistical methods: (1) sensitivity analysis (Morris screening method) to identify an input subset for the advanced controller; (2) Monte Carlo method (trajectory-based random sampling) to find suitable initial values for the control inputs; and (3) optimisation algorithm (performing as a supervisory controller) to re-calibrate these control inputs in order to minimise plant operating costs. The model-based supervisory controller proposed allowed filtration to be optimised with low computational demands (about 5min). E…

INGENIERIA HIDRAULICAEngineeringMonte Carlo methodFiltration and SeparationBiochemistrylaw.inventionControl theorylawGeneral Materials ScienceSensitivity (control systems)Physical and Theoretical ChemistryControl systemProcess engineeringTECNOLOGIA DEL MEDIO AMBIENTESpargingFiltrationOperating costDowntimebusiness.industryModel-based automatic tuningControl engineeringControl systembusinessSubmerged anaerobic membrane bioreactorsModel filtrationJournal of Membrane Science
researchProduct

Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures

2013

[EN] The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33 degrees C), and a controlled temperature (33 degrees C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study; (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban…

INGENIERIA HIDRAULICAEnvironmental EngineeringBioengineeringEnergy balanceEnvironmentWastewaterWaste Disposal FluidWater PurificationEnvironmental impactLife cycle assessmentBioreactorsBiogasAnaerobiosisCitiesWaste Management and DisposalLife-cycle assessmentEffluentTECNOLOGIA DEL MEDIO AMBIENTESubmerged anaerobic MBR (SAnMBR)SewageSulfatesRenewable Energy Sustainability and the EnvironmentGlobal warming potentialTemperatureEnvironmental engineeringMembranes ArtificialGeneral MedicineWaste treatmentWastewaterBiofuelBiofuelsEnvironmental scienceSewage treatmentWater treatmentMethane
researchProduct

Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion

2015

The main objective of this paper is to assess different treatment schemes for designing a submerged anaerobic membrane bioreactor (AnMBR) based WWTP. The economic impact of including a primary settling (PS) stage and further anaerobic digestion (AD) of the wasted sludge has been evaluated. The following operating scenarios were considered: sulphate-rich and low-sulphate urban wastewater (UWW) treatment at 15 and 30 ºC. To this aim, the optimum combination of design/operating parameters that resulted in minimum total cost (CAPEX plus OPEX) for the different schemes and scenarios was determined. The AnMBR design was based on both simulation and experimental results from an AnMBR plant featuri…

Energy recoveryEngineeringCAPEX/OPEXINGENIERIA HIDRAULICAIndustrial-scale hollow-fibre membranesbusiness.industryFull-scale designEnvironmental engineeringSubmerged anaerobic MBR (AnMBR)Filtration and SeparationAnaerobic membrane bioreactorAnalytical ChemistryAnaerobic digestionWastewaterSettlingUrban wastewater treatmentbusinessTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

2020

[EN] Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal of this work was to corroborate that pH data could be used to monitor microalgae performance by means of data from an outdoor membrane photobioreactor (MPBR) plant. In this system, microalgae photosynthetic activity was favoured over other physical and biological processes, so that the pH data dynamics was theoretically related to the microalgae carbon uptake rate (CUR). Shortand long-term continuous operations were tested to corroborate the relationship between the first d…

INGENIERIA HIDRAULICAEnvironmental Engineering0208 environmental biotechnologyBiomassPhotobioreactor02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawControl microalgae cultivationPhotosynthesis01 natural sciencesPhotobioreactorsNutrientMicroalgaeMicroalgae growthBiomassPhotosynthesisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesKinetic modelCarbon uptakeOn-line monitoringData dynamicsGeneral MedicineHydrogen-Ion ConcentrationPulp and paper industry020801 environmental engineeringEnvironmental scienceJournal of Environmental Management
researchProduct

Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system

2012

The aim of this study was to evaluate the long-term performance of hollow-fibre (HF) membranes used to treat urban wastewater in a submerged anaerobic MBR when operating sub-critically. To this end, a demonstration plant with two industrial scale HF ultrafiltration membrane modules was operated under different conditions. The main factor affecting membrane performance was the concentration of mixed liquor total solids (MLTS). The reversible fouling rate remained low even when MLTS levels (about 25 g L−1) in the membrane tank were high. No chemical cleaning was conducted whilst operating the plant for more than one year because no irreversible fouling problems were detected. The almost compl…

Industrial scale hollow-fibre membranesINGENIERIA HIDRAULICAFoulingChemistryMembrane foulingEnvironmental engineeringUltrafiltrationFiltering resistanceFiltration and SeparationAnalytical Chemistrylaw.inventionLong-term operationMembraneWastewaterBiogaslawSubmerged anaerobic MBRSub-critical filtrationTECNOLOGIA DEL MEDIO AMBIENTESpargingFiltrationSeparation and Purification Technology
researchProduct

Resource recovery from food waste via biological processes

2021

Abstract The need for sustainable development is driving a major focus shift in the biowaste treatment sector. While traditional practices such as landfilling are progressively being banned/penalized due to their obvious environmental impacts and prevention policies are being implemented, the potential of food waste (FW) as a resource is being increasingly recognized. The immense amounts of FW produced worldwide—and its overall characteristics—make it a promising candidate for resource recovery if collected separately, a practice that is gaining popularity. This chapter aims at giving a general overview of the different processes that are being developed/implemented for resource recovery fr…

Sustainable developmentFood wasteResource (biology)BusinessEnvironmental planningResource recovery
researchProduct

Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

2021

International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…

0106 biological sciencesPerformance indicatorsComputer scienceWastewater treatment010501 environmental sciencesWastewaterMembrane bioreactor01 natural sciences7. Clean energyWaste Disposal FluidBioreactorsTheoreticalModels11. SustainabilityWaste Management and Disposalmedia_common[SDE.IE]Environmental Sciences/Environmental EngineeringWaste DisposalGeneral MedicineEnergy consumptionBiological processes High environmental sustainability Modelling framework Performance indicators Bioreactors Membranes Artificial Models Theoretical Waste Water Greenhouse Gases Waste Disposal Fluid6. Clean waterBiological processes; High environmental sustainability; Modelling framework; Performance indicators; Bioreactors; Membranes Artificial; Models Theoretical; Waste Water; Greenhouse Gases; Waste Disposal FluidInternational watersArtificialFluidBiotechnologyEnvironmental Engineeringmedia_common.quotation_subjectModelling frameworkBioengineering12. Responsible consumptionGreenhouse Gases010608 biotechnologyGénie chimiqueQuality (business)Waste Water[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGénie des procédés0105 earth and related environmental sciencesMembranesBiological processesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentMembrane foulingMembranes ArtificialModels Theoretical[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation13. Climate actionGreenhouse gasSustainabilityHigh environmental sustainabilityBiochemical engineeringPerformance indicator
researchProduct

Instrumentation, control, and automation for submerged anaerobic membrane bioreactors

2015

A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pr…

EngineeringINGENIERIA HIDRAULICAAutomatic controlUltrafiltrationPID controllerUltrafiltrationIndustrial-scale membranesFeedbackWater PurificationBacteria AnaerobicBioreactorsBiogasBioreactorEnvironmental ChemistryAnaerobiosisSubmerged anaerobic membrane bioreactor (AnMBR)Waste Management and DisposalInstrumentationSpargingTECNOLOGIA DEL MEDIO AMBIENTEWater Science and TechnologyWaste managementSewagebusiness.industryMembranes ArtificialGeneral MedicineEquipment DesignRoboticsEquipment Failure AnalysisWastewaterUrban wastewater treatmentSewage treatmentbusinessControl and automation (ICA)Demonstration plant
researchProduct

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

2020

[EN] On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 sug…

Environmental EngineeringMonitoring0208 environmental biotechnologyBiomass02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawWastewater01 natural sciencesWaste Disposal FluidDomestic wastewaterNutrientStatistical analysesMicroalgaeBiomassPondsWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesHigh rateOpen pondsbiologyBacteria[SDE.IE]Environmental Sciences/Environmental EngineeringMinimum timeEnvironmental engineeringGeneral Medicinebiology.organism_classification6. Clean water020801 environmental engineeringSingle-stage treatmentWastewaterEnvironmental scienceSewage treatmentBacteria
researchProduct

Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater

2022

[EN] This paper studied the feasibility of using dynamic membranes (DMs) to treat municipal wastewater (MWW). Effluent from the primary settler of a full-scale wastewater treatment plant was treated using a flat 1 mu m pore size open monofilament polyamide woven mesh as supporting material. Two supporting material layers were required to self-form a DM in the short-term (17 days of operation). Different strategies (increasing the filtration flux, increasing the concentration of operating solids and coagulant dosing) were used to enhance the required forming time and pollutant capture efficiency. Higher permeate flux and increased solids were shown to be ineffective while coagulant dosing sh…

Dynamic membranesEnginyeria hidràulicaDirect membrane filtrationMunicipal wastewater treatmentProcess Chemistry and Technologydirect membrane filtration; dynamic membranes; resource recovery; municipal wastewater treatmentChemical Engineering (miscellaneous)Aigües residuals Plantes de tractamentFiltration and SeparationResource recoveryTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct