Search results for "Photonic"

showing 10 items of 1274 documents

Control of signal coherence in parametric frequency mixing with incoherent pumps: Narrowband mid-infrared light generation by downconversion of broad…

2012

International audience; We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths > 10 THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence…

Amplified spontaneous emissionLithium niobatePhysics::Optics01 natural sciences010309 opticsMEDIAchemistry.chemical_compoundOpticsNarrowband0103 physical sciencesSpectral width010306 general physicsPhysicsSum-frequency generationCRYSTALAcoustooptical devices; interferometry; mixer circuitsbusiness.industryQuantum noiseStatistical and Nonlinear PhysicsBEAMSOptical parametric amplifierAtomic and Molecular Physics and OpticsOUTPUTCONTINUUMchemistryOSCILLATORSbusinessPhotonic-crystal fiber
researchProduct

Er-doped photonic crystal fibre characterization method based on McCumber theory

2009

Characterization and modeling of Er-doped fibres [1] allowed in the past years fruitful developments of amplifiers and lasers. Since in a conventional fibre monomodal propagation of light is achieved in a very short length (once energy of other modes has been radiated) the cutback technique has been successfully used to determine absorption cross sections at the pump and gain band wavelengths. Emission cross sections have been usually determined instead from the measurement of gain or amplified spontaneous emission (ASE) spectrum together with the use of theoretical models. In a photonic crystal fibre (PCF) the limited size of the air-holes lattice originates energy radiation from the highe…

Amplified spontaneous emissionMaterials sciencebusiness.industryPhysics::Opticschemistry.chemical_elementCutback techniqueLaserlaw.inventionErbiumOptical pumpingOpticschemistrylawFusion splicingOptoelectronicsbusinessPhotonic-crystal fiberPhotonic crystalCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers

2008

International audience; We study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated.

Amplified spontaneous emissionOptical fiberPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticsliquid waves; oceanography; dispersive fiberlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringoceanographyliquid wavesPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]dispersive fiberContinuum (measurement)business.industryNonlinear opticsBreaking waveStatistical and Nonlinear PhysicsPulse shapingAtomic and Molecular Physics and OpticsNonlinear systembusinessPhotonic-crystal fiber
researchProduct

Amplified Spontaneous Emission in Thin Films of CsPbX3 Perovskite Nanocrystals

2019

During the last years, Metal Halide Perovskites (MHPs) have attracted special attention as an efficient conversion films for photovoltaics, or excellent gain media to construct optical sources. In spite of the fact that most of the works have been focussed on CH 3 NH 3 PbX 3 (X=Cl, Br, I) polycrystalline thin films, MHP can be also synthesized as colloidal nanocrystals. In particular, caesium lead halide perovskite CsPbX 3 nanocrystals (NCs) revealed extraordinary properties for optoelectronics. With a high quantum yield of emission (>90%) at room temperature and linewidths less than 100 meV, CsPbX 3 NCs have demonstrated favourable characteristics for active photonics. Indeed, thin films o…

Amplified spontaneous emissionPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technologyNanosecond010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesFemtosecondOptoelectronicsStimulated emissionThin filmPhotonics0210 nano-technologybusinessPerovskite (structure)2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

First experimental demonstration of a plasmonic MMI switch in 10 Gb/s true data traffic conditions

2012

We report the first experimental performance evaluation of a 75 um long plasmonic MMI switch, hetero-integrated on a SOI platform, operating with 10Gb/s data signals. The switch exhibits 2.9μs response time and 44.5% modulation depth while its extinction ratio varies from 5.4 to -1.5 dB for 35mW switching power. Error-free performance was achieved.

Amplitude modulationPhysicsSilicon photonicsExtinction ratioPhotonic integrated circuitElectronic engineeringSilicon on insulatorResponse timeOptical switchPlasmon
researchProduct

The use of Stokes-Mueller polarimetry for assessment of amyloid-β progression in a mouse model of Alzheimer’s disease

2020

Abstract Alzheimer’s disease, being a major societal burden, demands improvement of current techniques for its treatment and diagnostics. Currently only autopsy histology is able to provide the definite diagnosis for Alzheimer’s disease. However, the procedure is rather time consuming and costly. In the current study, we utilized Stokes and Mueller polarimetry techniques to screen for amyloid-β (Aβ) deposits in formalin-fixed, paraffin-embedded mouse brain tissue at different stages of Alzheimer’s disease. The study has shown that the presence of Aβ plaques influences the properties of scattered polarized light. The Poincaré sphere was used as a graphical tool for the visualization of the a…

Amyloid βbrainPolarimetryDiseaselight scatteringScattering03 medical and health sciencessymbols.namesake0302 clinical medicinestatistical analysisScreening methodStokes parameterstissuesComputingMilieux_MISCELLANEOUS030304 developmental biologyPoincare spherepolarimetryPhysics0303 health sciencespolarizationDisease progressionDepolarizationAlzheimer's diseaseAlzheimer's[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsStatistical analysisAmyloid-ß plaque[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicsymbolsAnisotropyDepolarizationNeuroscience030217 neurology & neurosurgeryOptical Biopsy XVIII: Toward Real-Time Spectroscopic Imaging and Diagnosis
researchProduct

Multiplexed plasmon sensor for rapid label-free analyte detection.

2013

Efficient and cost-effective multiplexed detection schemes for proteins in small liquid samples would bring drastic advances to fields like disease detection or water quality monitoring. We present a novel multiplexed sensor with randomly deposited aptamer functionalized gold nanorods. The spectral position of plasmon resonances of individual nanorods, monitored by dark-field spectroscopy, respond specifically to different proteins. We demonstrate nanomolar sensitivity, sensor recycling, and the potential to upscale to hundreds or thousands of targets.

AnalyteMaterials scienceAptamerNanophotonicsProtein Array AnalysisBioengineeringNanotechnology02 engineering and technologyBiosensing Techniques010402 general chemistry01 natural sciencesMultiplexingNanotechnologyGeneral Materials ScienceSpectroscopyPlasmonLabel freeStaining and LabelingMechanical EngineeringProteinsGeneral ChemistryEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesEquipment Failure AnalysisNanorod0210 nano-technologyNano letters
researchProduct

Experimental Study of the Oriented Immobilization of Antibodies on Photonic Sensing Structures by Using Protein A as an Intermediate Layer

2018

[EN] A proper antibody immobilization on a biosensor is a crucial step in order to obtain a high sensitivity to be able to detect low target analyte concentrations. In this paper, we present an experimental study of the immobilization process of antibodies as bioreceptors on a photonic ring resonator sensor. A protein A intermediate layer was created on the sensor surface in order to obtain an oriented immobilization of the antibodies, which enhances the interaction with the target antigens to be detected. The anti-bovine serum albumin (antiBSA)-bovine serum albumin (BSA) pair was used as a model for our study. An opto-fluidic setup was developed in order to flow the different reagents and,…

AnalyteMaterials scienceIntegrated photonicsSerum albuminBiosensing TechniquesRing resonator02 engineering and technologylcsh:Chemical technologyBiotecnologia01 natural sciencesBiochemistryAntibodiesArticleAnalytical Chemistry010309 opticsResonatorring resonatorsensorQUIMICA ANALITICATEORIA DE LA SEÑAL Y COMUNICACIONES0103 physical scienceslcsh:TP1-1185Electrical and Electronic EngineeringStaphylococcal Protein AInstrumentationIntegrated photonics; ring resonator; sensor; biosensingSensorDetection limitPhotonsChromatographybiologyBiosensingbusiness.industrySerum Albumin BovineRepeatabilityÒptica021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Opticsbiology.proteinbiosensingPhotonics0210 nano-technologybusinessProtein ABiosensorSensors
researchProduct

Visible light photocatalytic activity of macro-mesoporous TiO2-CeO2inverse opals

2018

Macro-mesoporous TiO2 inverse opal materials were synthesized and they were tested as photocatalysts under visible light irradiation. The influence of cerium oxide addition towards the Rhodamine B (RhB) photodegradation activity was evaluated. Structural, textural, spectral and surface properties of the TiO2-CeO2 inverse opal nanocomposites were studied by XRD, XPS, SEM, TEM, N2 adsorption-desorption, Diffuse Reflectance UV–vis and Photoluminescence spectroscopies. Compared to commercial TiO2 anatase, the macro-mesoporous TiO2 inverse opal exhibited six times higher kinetic rate constant in the RhB degradation under visible light irradiation. The good photocatalytic activity was related to …

AnataseCerium oxideRhodamine BGeneral Chemical EngineeringInorganic chemistryGeneral Physics and Astronomy02 engineering and technologyAdvanced oxidation process010402 general chemistryPorous structure01 natural sciencesNanomaterialschemistry.chemical_compoundPhysics and Astronomy (all)PhotocatalysiChemical Engineering (all)PhotocatalysisPhotodegradationChemistryPhotonic effectChemistry (all)General ChemistryCerium oxidePorous structures021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringAdvanced oxidation process; Cerium oxide; Photocatalysis; Photonic effect; Porous structures; Rhodamine B; Titanium dioxide; Chemistry (all); Chemical Engineering (all); Physics and Astronomy (all)Titanium dioxidePhotocatalysisAdvanced oxidation proceTitanium dioxideSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyMesoporous materialVisible spectrum
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct