Search results for "Physics and astronomy"

showing 10 items of 8108 documents

Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

2016

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

010302 applied physicsKelvin probe force microscopeMaterials sciencesurface potentialbusiness.industrySystem of measurementPhysicsQC1-999Composite numberGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticscontact potential differencekelvin probe0103 physical sciences0210 nano-technologybusinessVolta potentialVoltageLatvian Journal of Physics and Technical Sciences
researchProduct

Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy

2019

International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…

010302 applied physicsKelvin probe force microscopePolarity reversalMaterials sciencePhysics and Astronomy (miscellaneous)Polarity (physics)business.industryNanowireCathodoluminescence02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIsotropic etching[SPI.MAT]Engineering Sciences [physics]/MaterialsNanolithography0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologybusinessMolecular beam epitaxy
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part I) I. Basic Principles of Measurements

2016

Abstract Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measuremen…

010302 applied physicsKelvin probe force microscopesurface potentialMaterials scienceCondensed matter physicsPhysicsQC1-999General EngineeringGeneral Physics and Astronomy01 natural sciencescontact potential differencekelvin probe0103 physical sciences010306 general physicsVolta potentialLatvian Journal of Physics and Technical Sciences
researchProduct

2020

Recent experiments have demonstrated the formation of free-standing Au monolayers by exposing the Au–Ag alloy to electron beam irradiation. Inspired by this discovery, we used semi-empirical effective medium theory simulations to investigate monolayer formation in 30 different binary metal alloys composed of late d-series metals such as Ni, Cu, Pd, Ag, Pt, and Au. In qualitative agreement with the experiment, we find that the beam energy required to dealloy Ag atoms from the Au–Ag alloy is smaller than the energy required to break the dealloyed Au monolayer. Our simulations suggest that a similar method could also be used to form Au monolayers from the Au–Cu alloy and Pt monolayers from Pt–…

010302 applied physicsMaterials scienceAlloyGeneral Physics and AstronomyBinary number02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMetalElectron beam irradiationvisual_art0103 physical sciencesMonolayerengineeringvisual_art.visual_art_medium0210 nano-technologyBeam energyAIP Advances
researchProduct

MOCVD growth of CdO very thin films: Problems and ways of solution

2016

Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…

010302 applied physicsMaterials scienceAtmospheric pressureGeneral Physics and AstronomyNanotechnologyCrystal growth02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films0103 physical sciencesMetalorganic vapour phase epitaxyThin filmComposite material0210 nano-technologyApplied Surface Science
researchProduct

Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3

2017

This work has been supported by the National Research Program in the framework of the project “Multifunctional Materials and composites, photonics and nanotechnology (IMIS2).”

010302 applied physicsMaterials scienceCondensed matter physicsAnalytical chemistryGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesElectric field0103 physical sciencesElectrocaloric effect:NATURAL SCIENCES:Physics [Research Subject Categories]PolarMaxwell relations0210 nano-technology
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices

2020

CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainbusiness.industryGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesPtychographylcsh:QC1-999Lattice (order)0103 physical sciencesComputer data storagePatterned mediaThermalMicroscopyddc:5300210 nano-technologybusinessNanoscopic scalelcsh:PhysicsAIP Advances
researchProduct

An anomalous wave formation at the Al/Cu interface during magnetic pulse welding

2020

This paper reports an anomalous wave formation at an Al/Cu bimetallic interface produced by magnetic pulse welding. The mechanism of the anomalous wave formation is investigated using both metallurgical characterization and the interface kinematics. It reveals that the anomalous wave is formed with the combination of the intermediate zone and the interdiffusion zone with a thickness of 70 nm, wherein the intermediate zone is caused by the local melting due to the high shear instability, and the interdiffusion zone is formed below the melting point of aluminum combined with ultrahigh heating and cooling rates of about 10^13 °C s^−1. A multiphysics simulation of impact welding has been perfor…

010302 applied physicsMaterials scienceCondensed matter physicsPhysics and Astronomy (miscellaneous)Multiphysicschemistry.chemical_element02 engineering and technologyWelding021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCharacterization (materials science)Shear (sheet metal)Magnetic pulse weldingchemistrylawAluminium0103 physical sciencesMelting point0210 nano-technologyBimetallic strip
researchProduct