Search results for "Physik"

showing 10 items of 293 documents

Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin

2017

We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON–CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm−3) nucleated at cloud base (Dr ≈ 5 ⋅ Nd). Additional cloud processes…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciences010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud basecloudrainWolkenphysikAerosolPhysics::Atmospheric and Oceanic Physicsconvection0105 earth and related environmental sciencesEffective radiusCoalescence (physics)15. Life on landlcsh:QC1-999AerosolAmbient airlcsh:QD1-99913. Climate actionEnvironmental scienceHalolcsh:PhysicsAmazon basinAtmospheric Chemistry and Physics
researchProduct

Sensitivities of Amazonian clouds to aerosols and updraft speed

2017

Abstract. The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly poll…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencesMeteorologyAmazonianCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud basecloudmicrophysicsWolkenphysikAerosolupdraft0105 earth and related environmental sciencesAmazon rainforestbusiness.industry15. Life on landMETEOROLOGIA FÍSICAlcsh:QC1-999AerosolEffective diameterlcsh:QD1-99913. Climate actionLiquid water contentEnvironmental sciencebusinesslcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Long-lived contrails and convective cirrus above the tropical tropopause

2017

Abstract. This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to −88 °C from measurements with the Russian high-altitude research aircraft M-55 Geophysica, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system H…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencescirrusSCOUT-O3010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencestropicslcsh:Chemistrytropopauseexhaustddc:550Relative humidityWake turbulenceStratosphere0105 earth and related environmental sciencesGeophysicaLidarInstitut für Physik der Atmosphärecontrailscontraillcsh:QC1-999FalconPlumeAerosolLidarlcsh:QD1-99913. Climate actionstratosphereEnvironmental scienceCirruslcsh:Physics
researchProduct

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

2018

Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM …

ConvectionAtmospheric ScienceMeteorology010504 meteorology & atmospheric sciences0207 environmental engineeringparticle production02 engineering and technology010501 environmental sciencesAtmospheric sciences01 natural sciencesAtmosphereTropospherelcsh:Chemistryddc:550PrecipitationWolkenphysik020701 environmental engineeringAerosol0105 earth and related environmental sciencesChemistryCondensationAtmosphärische Spurenstoffelcsh:QC1-999AerosolTrace gasEarth scienceslcsh:QD1-99913. Climate actionupper troposphereParticlelcsh:Physics
researchProduct

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

2017

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

ConvectionAtmospheric Sciencecould condenstion nuclei010504 meteorology & atmospheric sciencesMeteorologysupersaturationCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud baseCloud condensation nucleicloudWolkenphysikAdiabatic processupdraftAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryDrop (liquid)CASlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceHalobusinesslcsh:Physics
researchProduct

Stochastic fluctuations of bosonic dark matter

2021

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)530 PhysicsScienceQFOS: Physical sciences500Astrophysics::Cosmology and Extragalactic Astrophysics530 PhysikCharacterization and analytical techniquesArticlePhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy and dark matterddc:500Astrophysics - Cosmology and Nongalactic AstrophysicsNature Communications
researchProduct

Spin-Wave Driven Bidirectional Domain Wall Motion in Kagome Antiferromagnets

2021

We predict a mechanism to controllably manipulate domain walls in kagome antiferromagnets via a single linearly polarized spin-wave source. We show by means of atomistic spin dynamics simulations of antiferromagnets with kagome structure that the speed and direction of the domain wall motion can be regulated by only tuning the frequency of the applied spin-wave. Starting from microscopics, we establish an effective action and derive the corresponding equations of motion for the spin-wave-driven domain wall. Our analytical calculations reveal that the coupling of two spin-wave modes inside the domain wall explains the frequency-dependent velocity of the spin texture. Such a highly tunable sp…

CouplingPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsLinear polarizationMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyEquations of motionPhysik (inkl. Astronomie)Domain wall (string theory)Spin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)Domain (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsSpin-½
researchProduct

The 2020 skyrmionics roadmap

2020

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an inte…

DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATION
researchProduct

Naturlehre für Landwirthe, Förster etc.

1834

Inhalt: Einleitung in das ganze Werk ; 1stes Naturgesetz. Beharrlichkeit ; 1ste Naturkraft. Körperanziehung ; 2te Naturkraft. Flächenanziehung ; 3te Naturkraft. Atomanziehung ; 2tes Naturgesetz. Ausgleichung ; 4te Naturkraft. Körperabstoßung ; 5te Naturkraft. Ausdehnung.

DabaszinātnesPhysik:NATURAL SCIENCES::Physics [Research Subject Categories]NaturwissenschaftenFizika
researchProduct

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct