Search results for "Plasmon"
showing 10 items of 614 documents
Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods.
2017
Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium–tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhanceme…
Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions
2013
Surface plasmon excitation of gold nanoparticles on ZnO in the presence of an aldehyde, an amine and phenylacetylene led to rapid and selective formation of propargylamines with good yields (50-95%) at room temperature. Plasmon mediated catalysis is the best available route for this ternary coupling.
Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas
2020
International audience; We investigate the influence of a static electric field on the incoherent nonlinear response of an unloaded electrically contacted nanoscale optical gap antenna. Upon excitation by a tightly focused near-infrared femtosecond laser beam, a transient elevated temperature of the electronic distribution results in a broadband emission of nonlinear photoluminescence (N-PL). We demonstrate a modulation of the yield at which driving photons are frequency up-converted by means of an external control of the electronic surface charge density. We show that the electron temperature and consequently the N-PL intensity can be enhanced or reduced depending on the command polarity a…
Wave-vector analysis of plasmon-assisted distributed nonlinear photoluminescence along Au nanowires
2020
We report a quantitative analysis of the wavevector diagram emitted by nonlinear photoluminescence generated by a tightly focused pulsed laser beam and distributed along Au nanowire via the mediation of surface plasmon polaritions. The nonlinear photoluminescence is locally excited at key locations along the nanowire in order to understand the different contributions constituting the emission pattern measured in a conjugate Fourier plane of the microscope. Polarization-resolved measurements reveal that the nanowire preferentially emits nonlinear photoluminescence polarized transverse to the long axis at close to the detection limit wavevectors with a small azimuthal spread in comparison to …
Colloidal plasmonic back reflectors for light trapping in solar cells.
2014
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…
Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties
2013
The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…
High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation…
2015
Non-isolated nanoparticles show a plasmonic response that is governed by the localized surface plasmon resonance (LSPR) collective modes created by the nanoparticle aggregates. The individual and collective LSPR modes of silver nanoparticle aggregated by covalent binding by means of bifunctional molecular linkers are described in this study. Individual contributions to the collective modes are investigated at nanometer scale by means of energy-filtering transmission electron microscopy and compared to ultraviolet–visible spectroscopy. It is found that the aspect ratio and the shape of the clusters are the two main contributors to the low-energy collective modes.
Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
2011
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilaye…
Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication
2010
In this work we report on a method to synthesize Ag–Au nanoparticles/polymer nanocomposite patterns by UV lithography. The photoresists are based on DNQ-novolac as the polymer matrix, and Ag(I) and Au(III) salts as the nanoparticle precursors. After UV lithography, silver and gold nanoparticles are in situ synthesized inside the polymer patterns during a post bake. The resulting structured nanocomposite shows a characteristic absorbance spectrum related to the plasmon frequency of the synthesized noble metal NPs. This method represents a fast, simple and low-cost approach to the formation of extended polymer patterns with embedded silver or gold NPs. Moreover, it is a mechanism to position …
DNA-Assisted Molecular Lithography
2018
During the past decade, DNA origami has become a popular method to build custom two- (2D) and three-dimensional (3D) DNA nanostructures. These programmable structures could further serve as templates for accurate nanoscale patterning, and therefore they could find uses in various biotechnological applications. However, to transfer the spatial information of DNA origami to metal nanostructures has been limited to either direct nanoparticle-based patterning or chemical growth of metallic seed particles that are attached to the DNA objects. Here, we present an alternative way by combining DNA origami with conventional lithography techniques. With this DNA-assisted lithography (DALI) method, we…