Search results for "Ploidy"

showing 10 items of 299 documents

Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells

2004

Early genetic instability induced in dividing V79-Cl3 Chinese hamster cells by inorganic arsenic, as demonstrated in our previous investigation, was evidenced by aneuploidy and nuclear abnormalities, but not by chromosomal rearrangements. Here we report the results of cytogenetic and morphological analyses performed on the progeny of cells dividing at the end of sodium arsenite treatment after they had been expanded through 120 generations (ASO cells) and then cloned. The acquired genetic instability persisted and was increased by highly unstable chromosomal rearrangements, namely dicentric chromosomes and telomeric associations, which were not seen following acute exposure. A peculiar find…

Cancer ResearchAneuploidyAntineoplastic Agentsgenomic instability arsenicChinese hamsterArsenicDicentric chromosomechemistry.chemical_compoundChromosome instabilityChromosomal InstabilityCricetinaemedicineAnimalsChromosome AberrationsbiologyChromosomeGeneral MedicineDNA Methylationmedicine.diseasebiology.organism_classificationMolecular biologySettore BIO/18 - GeneticachemistryDNA methylationCytogenetic AnalysisCarcinogensDNADNA hypomethylation
researchProduct

Centrosome amplification induced by hydroxyurea leads to aneuploidy in pRB deficient human and mouse fibroblasts.

2006

Alterations in the number and/or morphology of centrosomes are frequently observed in human tumours. However, it is still debated if a direct link between supernumerary centrosomes and tumorigenesis exists and if centrosome amplification could directly cause aneuploidy. Here, we report that hydroxyurea treatment induced centrosome amplification in both human fibroblasts expressing the HPV16 -E6-E7 oncoproteins, which act principally by targeting p53 and pRB, respectively, and in conditional pRB deficient mouse fibroblasts. Following hydroxyurea removal both normal and p53 deficient human fibroblasts arrested. On the contrary pRB deficient fibroblasts entered the cell cycle generating aneupl…

Cancer ResearchAneuploidyCentrosome amplificationBiologymedicine.disease_causeRetinoblastoma ProteinCell LineMicepRBChromosomal InstabilitymedicineDeficient mouseAnimalsHumansHydroxyureaCINCells CulturedCentrosomeDNA synthesisCell cycleFibroblastsmedicine.diseaseAneuploidyCell biologySettore BIO/18 - GeneticaOncologyCentrosomeAneuploid CellsCarcinogenesisCancer letters
researchProduct

Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts

1997

In the present work we studied mechanisms of growth control in contact-inhibited and serum-deprived human diploid fibroblasts. The observation that the effects on [3H]thymidine incorporation and reduction of retinoblastoma gene product-phosphorylation were additive when contact-inhibition and serum-deprivation were combined led us to the conclusion that the underlying mechanisms might be different. Both contact-inhibition and serum-deprivation led to a strong decrease of cdk4-kinase-activity and cdk2-phosphorylation at Thr 160, while the total amounts of cdk4 and cdk2 remained constant. In contact-inhibited cells, we revealed a strong protein accumulation of the cdk2-inhibitor p27 and a sli…

Cancer ResearchCell Cycle ProteinsProtein Serine-Threonine KinasesRetinoblastoma ProteinCulture Media Serum-FreeS PhaseCyclin D1CyclinsProto-Oncogene ProteinsCDC2-CDC28 KinasesGeneticsmedicineHumansCyclin D1Cyclin D3PhosphorylationCyclin D3FibroblastMolecular BiologyCyclin-Dependent Kinase Inhibitor p16CyclinbiologyCell growthTumor Suppressor ProteinsCyclin-Dependent Kinase 2Cyclin-dependent kinase 2G1 PhaseCyclin-Dependent Kinase 4FibroblastsDiploidyCyclin-Dependent KinasesCulture MediaCell biologymedicine.anatomical_structureCell culturebiology.proteinbiological phenomena cell phenomena and immunitySignal transductionMicrotubule-Associated ProteinsCell DivisionCyclin-Dependent Kinase Inhibitor p27Oncogene
researchProduct

Interclonal heterogeneity in a human epithelioid-sarcoma cell line (Gru-1)

1994

Three clonal sub-populations, GRU-IA, GRU-IB, and GRU-IC, isolated from the human epithelioid sarcoma cell line GRU-I, were characterized morphologically, cytogenetically and with regard to proliferation kinetics. Immunocytochemically, major differences became evident in the expression of cytokeratin 18 and neurofilament proteins, which are indicative for epithelial and neural differentiation respectively. Vimentin, a mesenchymal differentiation marker, however, could be detected in all tumor cells of each sub-population. Laminin, a major compound of basement membranes, formed abundant intercellular network-like patterns in GRU-IB and GRU-IC, whereas GRU-IA was characterized by a diffuse in…

Cancer ResearchPathologymedicine.medical_specialtyEpithelioid sarcomaMice NudeVimentinBiologyGenetic HeterogeneityMiceCytokeratinNeurofilament ProteinsLamininTumor Cells CulturedmedicineAnimalsHumansVimentinSecretionMembrane GlycoproteinsMucin-1MucinsCell DifferentiationSarcomaDNA NeoplasmAneuploidyFlow Cytometrymedicine.diseaseMolecular biologyClone CellsGene Expression Regulation NeoplasticOncologyCell culturebiology.proteinKeratinsNeural differentiationLamininCell DivisionIntracellularInternational Journal of Cancer
researchProduct

Aurora-A Transcriptional Silencing and Vincristine Treatment Show a Synergistic Effect in Human Tumor Cells

2008

Aurora-A is a centrosome-associated serine/threonine kinase that is overexpressed in multiple types of human tumors. Primarily, Aurora-A functions in centrosome maturation and mitotic spindle assembly. Overexpression of Aurora-A induces centrosome amplification and G 2 /M cell cycle progression. Recently, it was observed that overexpression of Aurora-A renders cells resistant to cisplatin (CDDP)-, etoposide-, and paclitaxel-induced apoptosis.Our results indicate that already in initial stages of cancer progression Aurora-A overexpression could have a major role in inducing supernumerary centrosomes and aneuploidy, as shown by immunohistochemistry on tissue sections from various stages of hu…

Cancer ResearchPathologymedicine.medical_specialtyTranscription GeneticApoptosismacromolecular substancesProtein Serine-Threonine KinasesBiologyTransfectionPLK1Aurora KinasesRNA interferenceCell Line TumormedicineHumansGene silencingGene SilencingRNA Small InterferingMitotic catastropheCentrosomeCisplatinCarcinomaCell CycleDrug SynergismAuroraA/stk15centrosome amplificationAneuploidy CINGeneral MedicineCell cycleAneuploidyAntineoplastic Agents PhytogenicGene Expression Regulation NeoplasticSettore BIO/18 - Geneticaenzymes and coenzymes (carbohydrates)OncologyVincristineCentrosomeColonic Neoplasmsembryonic structuresCancer cellCancer researchbiological phenomena cell phenomena and immunityHeLa Cellsmedicine.drugOncology Research Featuring Preclinical and Clinical Cancer Therapeutics
researchProduct

RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts

2006

AbstractBackgroundIncorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss …

Cancer ResearchTime FactorsTranscription GeneticRbCentrosomes AneuploidyGene ExpressionMitosisAneuploidyBiologyRetinoblastoma Proteinlcsh:RC254-282Chromosome segregationMiceChromosome instabilityGene duplicationmedicineAnimalsCentrosome duplicationMitosisCells CulturedCentrosomeResearchGene AmplificationFibroblastsAneuploidylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseSettore BIO/18 - GeneticaSpindle checkpointOncologyCentrosomeCancer researchMolecular MedicineMolecular Cancer
researchProduct

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

2021

[Abstract] The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell s…

Cancer ResearchTranscription GeneticCellGene ExpressionRNA polymerase IIYeast and Fungal ModelsProtein SynthesisQH426-470HaploidyBiochemistryPolymerasesSirtuin 2Transcription (biology)RNA Polymerase IHomeostasisCell Cycle and Cell DivisionGenetics (clinical)Silent Information Regulator Proteins Saccharomyces cerevisiaebiologyTranscriptional ControlEukaryotaChemical SynthesisGenomicsCell biologyNucleic acidsmedicine.anatomical_structureExperimental Organism SystemsRibosomal RNARNA polymeraseCell ProcessesRNA Polymerase IIResearch ArticleCell biologyCellular structures and organellesSaccharomyces cerevisiae ProteinsBiosynthetic TechniquesSaccharomyces cerevisiaeSaccharomyces cerevisiaeResearch and Analysis MethodsDNA RibosomalSaccharomycesModel OrganismsCyclinsDNA-binding proteinsmedicineRNA polymerase IGeneticsGene RegulationNon-coding RNAMolecular BiologyEcology Evolution Behavior and SystematicsCell SizeMessenger RNACèl·lules eucariotesOrganismsFungiRNABiology and Life SciencesProteinsGenes rRNARibosomal RNAModels Theoreticalbiology.organism_classificationYeastGenòmicabiology.proteinAnimal StudiesRNARibosomes
researchProduct

MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer

2021

Summary We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs …

Candidate geneMultidisciplinaryDosage compensationColorectal cancerBioinformaticsScienceQCancerMycBiologymedicine.diseaseArticleDownregulation and upregulationCancer cellmicroRNATranscription factorsmedicineCancer researchcancerDosage compensationaneuploidyMathematical biosciencesSystems biologyTranscription factormiRNAiScience
researchProduct

Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reve…

2020

Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early m…

CarcinogenesisCircadian clockAntineoplastic AgentsBiologyGenomeArticleCatalysisBivalent (genetics)Epigenesis Geneticlcsh:ChemistryProto-Oncogene Proteins c-mycInorganic ChemistryTranscriptomeMicePolyploidGene DuplicationNeoplasmsProtein Interaction MappingAnimalsHumanscancerEpigeneticsPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyGenepolyploidybivalent genesSpectroscopyGeneticsGenomePloidiesCircadian Rhythm Signaling Peptides and ProteinsOrganic Chemistryearly multicellularityviral-origin oncogenesOncogenesGeneral MedicineembryonalityPhenotypeNeoplasm ProteinsunicellularityComputer Science ApplicationsGene Expression Regulation Neoplasticlcsh:Biology (General)lcsh:QD1-999Drug Resistance NeoplasmMetabolic Networks and PathwaysInternational Journal of Molecular Sciences
researchProduct

Simultaneous reduction of MAD2 and BUBR1 expression induces mitotic spindle alterations associated with p53 dependent cell cycle arrest and death

2014

Most human tumors are characterized by aneuploidy that is believed to be the consequence of chromosomal instability (CIN). The mechanism(s) leading to aneuploidy and the pathways that allow its tolerance are not completely understood. The Spindle Assembly Checkpoint (SAC) is a cellular surveillance mechanism working during mitosis, and alterations of genes that encode components of the SAC weakening the mitotic checkpoint, induce aneuploidy by chromosome mis-segregation. We induced aneuploidy in near-diploid tumor cells by simultaneous depletion of the SAC proteins MAD2 and BUBR1 by RNA interference in the attempt to gain further insight on the cellular responses to aneuploidy. Individual r…

Cell cycle checkpointMad2AneuploidyCell BiologyGeneral MedicineCell cycleBiologymedicine.diseaseSpindle apparatusCell biologySpindle checkpointChromosome instabilitymedicineMitosisCell Biology International
researchProduct